比赛链接https://www.jisuanke.com/contest/3098?view=challenges

B题 拉格朗日插值

题意  T组输入。一个n次多项式 f(x) ,每项的系数不知道,只知道f(0),f(1)..f(n) 的值,m个询问,L,R。计算$\sum_{i=L}^{R}f(i)\quad mod(9999991)$

$(1\leq T\leq 5) $

$(1\leq n\leq 1000) $

$(1\leq m\leq 2000) $

$(1\leq L\leq R \leq 9999990)$

解析 遇到这题我是崩溃的,听大家说是拉格朗日插值,找到了一个快速拉格朗日的板子,贴上去就过了。。。

#include<bits/stdc++.h>
using namespace std;
#define maxn 1010
typedef long long LL;
const LL mod = ; LL powmod(LL aa, LL x) {
LL res = ;
for(; x > ; x >>= ) {
if(x & )res = (res * aa) % mod;
aa = (aa * aa) % mod;
}
return res;
} struct lagrange {
#define ll long long
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define D 2010 //D比MAXN大100就行
ll a[D], f[D], g[D], p[D], p1[D], p2[D], b[D], h[D][], C[D];
void init(int M) {//初始化:参数填MAXN + 20
f[] = f[] = g[] = g[] = ;
rep(i, , M + ) f[i] = f[i - ] * i % mod;
g[M + ] = powmod(f[M + ], mod - );
per(i, , M + ) g[i] = g[i + ] * (i + ) % mod;
}
/*给定一组样本数据a[],规模为0-d,计算出第n项*/
ll calcn(int d, ll *a, ll n) {
if (n <= d) return a[n];
p1[] = p2[] = ;
rep(i, , d + ) {
ll t = (n - i + mod) % mod;
p1[i + ] = p1[i] * t % mod;
}
rep(i, , d + ) {
ll t = (n - d + i + mod) % mod;
p2[i + ] = p2[i] * t % mod;
}
ll ans = ;
rep(i, , d + ) {
ll t = g[i] * g[d - i] % mod * p1[i] % mod * p2[d - i] % mod * a[i] % mod;
if ((d - i) & ) ans = (ans - t + mod) % mod;
else ans = (ans + t) % mod;
}
return ans;
}
/*
给定一组观测点(0, a[0]), (1, a[1]), ...,(m, a[m]),、
样本点的个数为a(x)的最高次+1。
求在该函数模型下,a[0]+a[1]+...+a[n]的和。
*/
ll ta[D];
ll polysum(ll m, ll *a, ll n) { // 给定a[0].. a[m],求\sum_{i=0}^{n}a[i]
memcpy(ta, a, sizeof(a[]) * (m + ));
ta[m + ] = calcn(m, ta, m + );
rep(i, , m + )ta[i] = (ta[i - ] + ta[i]) % mod;
return calcn(m + , ta, n);
}
};
int main()
{
int t;
scanf("%d",&t);
while(t--){
ll a[maxn],n,m;
scanf("%lld%lld",&n,&m);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
lagrange ri;
ri.init(maxn+);
while(m--){
ll l,r;
scanf("%lld%lld",&l,&r);
printf("%lld\n",(ri.polysum(n,a,r)-ri.polysum(n,a,l-)+mod)%mod);
}
}
}

H题  FWT+线段树

题意   一个n代表A,B数组的长度,A,B两个数组中的数两两或(二进制运算)一下 ,得到一个不去重C数组(显然C的长度为n*n)。接下来一个m代表操作次数,每次输入两个数L,R

如果L等于0,表示询问C数组中第R个数,否则表示C数组中第L个数到第R个数 开根号。

解析 用FWT求出来 or 之后 每个数的个数,然后建立权值线段树,或者前缀和+二分,都可以log时间复杂度求出第k个数是几。只需要知道这个数开了几次根号,L,R会很大,

但是数量只有那么多,离散化一下就可以解决了,1e5开根号大于5次就是1了,小于5次暴力开就好了。

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef long long ll;
typedef pair<int,int> Pii;
const int maxn = 3e5+; ll a[maxn],b[maxn],c[maxn];
void FWT_or(ll *a,int N,int opt)
{
for(int i=;i<=N;i<<=)
for(int p=i<<,j=;j<=N;j+=p)
for(int k=;k<i;++k)
if(opt==)a[i+j+k]=a[j+k]+a[i+j+k];
else a[i+j+k]=a[i+j+k]-a[j+k];
}
ll C[maxn];
int lowbit(int x)
{
return x&(-x);
}
ll bitgetsum(int x)
{
ll ans=;
for(int i=x;i>;i-=lowbit(i))
ans+=C[i];
return ans;
}
void bitupdate(int x,int z)
{
for(int i=x;i<=3e5;i+=lowbit(i))
C[i]+=z;
}
struct ndoe
{
ll l,r;
}q[maxn];
vector<ll> v;
int getid(ll x){
return lower_bound(all(v),x)-v.begin()+;
}
ll sum[maxn*];
void pushUp(int rt)
{
sum[rt]=sum[rt<<]+sum[rt<<|];
}
void build(int l,int r,int rt)
{
if(l==r){
sum[rt]=c[l];
return;
}
int m=(l+r)>>;
build(l,m,rt<<);
build(m+,r,rt<<|);
pushUp(rt);
}
int query(ll val,int l,int r,int rt)
{
if(l==r){
return l;
}
int mid=(l+r)>>;
if(sum[rt<<]>=val)
return query(val,l,mid,rt<<);
else
return query(val-sum[rt<<],mid+,r,rt<<|);
}
int main()
{
int n,x,m;
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d",&x);a[x]++;
}
for(int i=;i<n;i++){
scanf("%d",&x);b[x]++;
}
n=2e5;
FWT_or(a,n,);FWT_or(b,n,);
for(int i=;i<=n;i++) c[i]=1ll*a[i]*b[i];
FWT_or(c,n,-);build(,n,);
scanf("%d",&m);
for(int i=;i<m;i++){
scanf("%lld%lld",&q[i].l,&q[i].r);
v.pb(q[i].r);
if(q[i].l!=)
v.pb(q[i].l);
}
sort(all(v));
v.erase(unique(all(v)),v.end());
for(int i=;i<m;i++){
if(q[i].l!=){
bitupdate(getid(q[i].l),);
bitupdate(getid(q[i].r)+,-);
}
else{
int ans,times = bitgetsum(getid(q[i].r));
if(times>=){
ans=;
}
else{
ans = query(q[i].r,,n,);
while(times--){
ans=floor(sqrt(ans));
}
}
printf("%d\n",ans);
}
}
return ;
}

The 2019 ICPC China Nanchang National Invitational and International Silk-Road Programming Contest B、H的更多相关文章

  1. The 2019 ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    目录 Contest Info Solutions A. Attack B. Polynomial E. Interesting Trip F. Sequence G. Winner H. Anoth ...

  2. The 2019 ICPC China Nanchang National Invitational and International Silk-Road Programming Contest - F.Sequence(打表+线段树)

    题意:给你一个长度为$n$的数组,定义函数$f(l,r)=a_{l} \oplus a_{l+1} \oplus...\oplus a_{r}$,$F(l,r)=f(l,l)\oplus f(l,l+ ...

  3. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  4. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  5. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  6. 2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)

    A. PERFECT NUMBER PROBLEM 题目链接:https://nanti.jisuanke.com/t/38220 题意: 输出前五个完美数 分析: 签到.直接百度完美数输出即可 #i ...

  7. ICPC China Nanchang National Invitational -- D. Match Stick Game(dp)

    题目链接:https://nanti.jisuanke.com/t/38223 题意:有一堆火柴构成了一个加减法式子,你可以把火柴重新组合,要求数字个数和原来一样多,每个数字的位数和对应原数字位数一样 ...

  8. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  9. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

随机推荐

  1. 关于MySQL的驱动org.gjt.mm.mysql.Driver

    今天看了一个比较老视频使用org.gjt.mm.mysql.Driver来驱动连接,便试了一下看看怎么样,结果一直连不上数据库,后来看了tomcat的后台发现有报这个问题,于是把驱动改成com.mys ...

  2. hdu 1875 最小生成树 prime版

    最小生成树prime版 大致的步骤 首先选取一个到集合最近的点 然后标记起在集合内部 然后更新最短距离 畅通工程再续 Time Limit: 2000/1000 MS (Java/Others)    ...

  3. Asp.Net Core 轻松学系列-5利用 Swagger 自动生成接口文档

    目录 前言 结语 源码下载 前言     目前市场上主流的开发模式,几乎清一色的前后端分离方式,作为服务端开发人员,我们有义务提供给各个客户端良好的开发文档,以方便对接,减少沟通时间,提高开发效率:对 ...

  4. map自定义键值类型

    map自定义键值类型 改变Map的默认比较方式 https://www.cnblogs.com/zjfdlut/archive/2011/08/12/2135698.html 大家知道,STL中的ma ...

  5. IE6图片透明问题

    网上很多解决IE6下png透明问题的方案,但是经本人实践,有的时候有用,有的时候并不能解决自己的问题.当是后者的时候,想到另外一种办法,就是当在IE6.IE7下使用gif图片,自己在测试的时候,如果g ...

  6. form-create教程:移除默认提交按钮

    本文将介绍form-create如何修改,隐藏默认提交按钮 form-create 是一个可以通过 JSON 生成具有动态渲染.数据收集.验证和提交功能的表单生成器.并且支持生成任何 Vue 组件.结 ...

  7. php获取客户机mac地址

    @exec("arp -a",$array); //执行arp -a命令,结果放到数组$array中 foreach($array as $value){ //匹配结果放到数组$m ...

  8. iOS中的分类(category)和类扩展(extension)

    今天在研究swift的时候看到了分类和扩展.这是两个十分重要有用的功能,但是之前用的不多,没有深入了解过,在今天就从头理一遍. 一.分类(Category): 概念: 分类(Category)是OC中 ...

  9. stm32 ADC模数转换 ADC多通道 ADC DMA

    通过调节电位器,改变AD转换值和电压值 STM32F1 ADC 配置步骤 1.使能GPIO时钟和ADC时钟 2.配置引脚模式为模拟输入 3.配置ADC的分频因子 4.初始化ADC参数,ADC_Init ...

  10. ant design pro超详细入门教程

    1.Ant Design Pro 初了解 说到ant design pro,得先了解一下ant design是个什么东西?ant design蚂蚁金服基于react打造的一个服务于企业级产品的UI框架 ...