题目链接:https://www.luogu.org/problem/CF1228C

问题可以转化为:求质数 $p$ 在 $1\sim n$ 中的每个数中的次幂之和.

因为 $p$ 是一个质数,只能由 $1$ 乘以 $p$ 表示出来,所以可以将问题转化为求 $p$ 在 $n!$ 中出现的次幂.

我们可以像提取公因式一样地去提取这个 $p$.

那么,先考虑 $p$ 的贡献:$1\sim n$ 中能被 $p$ 整除的乘积为 $p^{\frac{n}{p}}\times (\frac{n}{p}!)$

然后递归处理啊 $\frac{n}{p}!$ 中 $p$ 出现的次数.

由于 $p>2$,而 $n<10^8$,所以提取次数不会超过 $65$,复杂度是很优秀的.

#include <bits/stdc++.h>
#define mod 1000000007
#define ll unsigned long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
vector<ll>v;
ll qpow(ll base,ll k)
{
ll tmp=1ll;
for(;k;k>>=1,base=base*base%mod) if(k&1) tmp=tmp*base%mod;
return tmp;
}
int main()
{
int i,j;
ll x,n,p;
// setIO("input");
scanf("%lld%lld",&x,&n);
p=x;
for(i=2;i*i<=p;++i)
{
if(p%i==0)
{
v.push_back(i);
for(;p%i==0;) p/=i;
}
}
if(p>1) v.push_back(p);
ll ans=1ll;
for(i=0;i<v.size();++i)
{
ll m=n;
ll now=0;
while(m>=v[i])
{
now+=m/v[i];
m/=v[i];
}
ans=ans*qpow(v[i], now)%mod;
}
printf("%lld\n",(long long)ans);
return 0;
}

  

CF #589 (Div. 2)C. Primes and Multiplication 快速幂+质因数的更多相关文章

  1. Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)

    链接: https://codeforces.com/contest/1228/problem/C 题意: Let's introduce some definitions that will be ...

  2. CF #589 (Div. 2) D. Complete Tripartite 构造

    这个 D 还是十分友好的~ 你发现这 $3$ 个集合形成了一个环的关系,所以随意调换顺序是无所谓的. 然后随便让 $1$ 个点成为第 $2$ 集合,那么不与这个点连边的一定也属于第二集合. 然后再随便 ...

  3. Codeforces Round #324 (Div. 2) B. Kolya and Tanya 快速幂

    B. Kolya and Tanya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pro ...

  4. Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  5. Codeforces Round #518 (Div. 1) Computer Game 倍增+矩阵快速幂

    接近于死亡的选手没有水平更博客,所以现在每五个月更一篇. 这道题呢,首先如果已经有权限升级了,那么后面肯定全部选的是 \(p_ib_i\) 最高的. 设这个值为 \(M=\max \limits_i ...

  6. CF #376 (Div. 2) C. dfs

    1.CF #376 (Div. 2)    C. Socks       dfs 2.题意:给袜子上色,使n天左右脚袜子都同样颜色. 3.总结:一开始用链表存图,一直TLE test 6 (1)如果需 ...

  7. CF #375 (Div. 2) D. bfs

    1.CF #375 (Div. 2)  D. Lakes in Berland 2.总结:麻烦的bfs,但其实很水.. 3.题意:n*m的陆地与水泽,水泽在边界表示连通海洋.最后要剩k个湖,总要填掉多 ...

  8. CF #374 (Div. 2) D. 贪心,优先队列或set

    1.CF #374 (Div. 2)   D. Maxim and Array 2.总结:按绝对值最小贪心下去即可 3.题意:对n个数进行+x或-x的k次操作,要使操作之后的n个数乘积最小. (1)优 ...

  9. CF #374 (Div. 2) C. Journey dp

    1.CF #374 (Div. 2)    C.  Journey 2.总结:好题,这一道题,WA,MLE,TLE,RE,各种姿势都来了一遍.. 3.题意:有向无环图,找出第1个点到第n个点的一条路径 ...

随机推荐

  1. 模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理、分类及应用

    模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Atte ...

  2. android 自动化测试案例之 MonkeyRunner

    #-*- coding: UTF-8 -*- #上面第一行是设置文件编码,windows下第一行必须是这个#文件名 MonkeyRunner.py#功能: 使用monkey runner测试app,此 ...

  3. 安装Docker step by step

    1. 系统要求 centos7以上   使用cat /etc/redhat-release查看系统版本,我的Centos 7.6 centos-extra 仓库 enable,默认是打开的 2.安装d ...

  4. ml

    基础篇: 1. 读书<Introduction to Data Mining>,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人.另外可以用这本书做参考<Data Mining ...

  5. JS基础_使用工厂方法创建对象(了解下就行了,用的不多)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. freemarker循环、下标及判断

    一.freemarker中list循环使用非常频繁,下面介绍lfreemarker中list简单的用法 1.在freemarker中遍历list数组使用list指令:<#list sequenc ...

  7. javascript新特性

    让我们看看javascript中的一些新特性.本文将介绍它们的语法和相关链接,以帮助读者及时了解它们的进展.我们将通过编写一个小测试项目来演示如何快速使用这些新功能! 关于提案 提案分为五个阶段.有关 ...

  8. Linux Ubuntu XShell连接虚拟机问题记录

    我们先用ip addr / ifconfig查看虚拟机ip地址,然后到windows下的cmd中ping 一下对应地址 一般是可以ping通的. 然后用Xshell或者其他工具连接虚拟机. 如果连不上 ...

  9. linux内存管理初学

    虚拟内存模型 Linux 内核本身并不运行在虚拟空间中,其使用的是物理寻址模式. 物理内存被分割为界面,一个内存页面的大小由PAGE_SIZE宏决定. 虚拟地址空间的方式使程序员可以将巨大的结构用于连 ...

  10. CentOS 7安装Hadoop集群

    准备三台虚拟机,ip分别为192.168.220.10(master).192.168.220.11(slave1).192.168.220.12(slave2) 准备好jdk-6u45-linux- ...