\[\Large\sum_{k=1}^{\infty}\frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)\]


\(\Large\mathbf{Solution:}\)
Within the interval \(\displaystyle 0\ < x < \pi/2\,\), the logtangent function has the series representation
\[\ln(\tan x)=\ln x -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}x^{2k}\]
So, let's integrate this series over a suitable interval, such as:
\[\begin{align*}
&\int_{\pi/4}^{\pi/3}\ln(\tan x)\,\mathrm{d}x=\int_{\pi/4}^{\pi/3}\ln x\,\mathrm{d}x- \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}\int_{\pi/4}^{\pi/3}x^{2k} \,\mathrm{d}x\\
&=\left(x\ln x-x\right)\Biggr|_{\pi/4}^{\pi/3}- \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}\left(\frac{x^{2k+1}}{2k+1 }\right)\Biggr|_{\pi/4}^{\pi/3}\\
&=\frac{\pi}{3}\ln\frac{\pi}{3}-\frac{\pi}{4}\ln\frac{\pi}{4}-\frac{\pi}{12} -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}\pi^{2k+1}}{k\,(2k+1)\,(2k)!}\left(\frac{1}{3^{2k+1}}-\frac{1}{4^{2k+1}}\right)\\
&=\pi\ln\left(\frac{\sqrt{2}\,\pi^{1/12}}{3^{1/3}}\right)-\frac{\pi}{12} -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}\pi^{2k+1}}{k\,(2k+1)\,(2k)!}\left(\frac{4^{2k+1}-3^{2k+1}}{12^{2k+1}}\right)\\
&=\pi\ln\left(\frac{\sqrt{2}\,\pi^{1/12}}{3^{1/3}\,e^{1/12}}\right) -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}\pi^{2k+1}}{k\,(2k+1)\,(2k)!}\left(\frac{4^{2k+1}-3^{2k+1}}{12^{2k+1}}\right)
\end{align*}\]
Next, we use the classic Zeta function result:
\[\zeta(2n)=(-1)^{n+1}\,\frac{B_{2n}\,\pi^{2n}2^{2n-1}}{(2n)!}\]
In the re-arranged form:
\[B_{2n}= (-1)^{n+1}\frac{(2n)!}{\pi^{2n}\,2^{2n-1}}\zeta(2n)\]
to obtain
\[\pi\ln\left(\frac{\sqrt{2}\,\pi^{1/12}}{3^{1/3}\,e^{1/12}}\right) +\frac{\pi}{6}\,\sum_{k=1}^{\infty}\frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)\]
The logtangent integral is also solvable in terms of the \textbf{Clausen Function}:
\[\int_0^{\phi}\ln(\tan x)\,\mathrm{d}x=-\frac{1}{2}\text{Cl}_2(2\phi)-\frac{1}{2}\text{Cl}_2(\pi-2\phi)\]
So the previous integral is equivalent to
\[\int_{\pi/4}^{\pi/3}\ln(\tan x)\mathrm{d}x=-\frac{1}{2}\text{Cl}_2\left(\frac{2\pi}{3}\right)-\frac{1}{2}\text{Cl}_2\left(\frac{\pi}{3}\right)+\text{Cl}_2\left(\frac{\pi}{2}\right)= \mathbf{G}-\frac{5}{6}\text{Cl}_2\left(\frac{\pi}{3}\right)\]
Since
\[\text{Cl}_2\left(\frac{2\pi}{3}\right)=\frac{2}{3}\text{Cl}_2\left(\frac{\pi}{3}\right)~,~\text{Cl}_2\left(\frac{\pi}{2}\right)=\mathbf{G}\]
Equating the two different evaluations of the logtangent integral, we get the final result:
\[\Large\boxed{\displaystyle \sum_{k=1}^{\infty}\frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)=\color{Blue} {\frac{6\mathbf{G}}{\pi}-\frac{5}{\pi}\text{Cl}_2\left(\frac{\pi}{3}\right)+ 6\ln\left(\frac{3^{1/3}\,e^{1/12}}{\sqrt{2}\,\pi^{1/12}}\right)}}\]
If expressed in terms of the Eta function (alternating Zeta function), since the logtangent series then reduces to:
\[\ln(\tan x) = \ln x + \sum_{k=1}^{\infty}\frac{2^{2k}\,\eta(2k)}{\pi^{2k}\,k}x^{2k}\]
So, for \(\displaystyle 0 < p < q <1/2\,\) and \(\displaystyle p\, ,q\in \mathbb{Q}\,\), we have
\[\begin{align*}
\int_{p\pi}^{q\pi}\ln(\tan x)\,\mathrm{d}x&=\frac{1}{2}\left[\text{Cl}_2(2p\pi)+\text{Cl}_2(\pi-2p\pi)-\text{Cl}_2(2q\pi)-\text{Cl}_2(\pi-2q\pi)\right]\\
&=\left(x\ln x-x\right)\Biggr|_{p\pi}^{q\pi}+\pi \sum_{k=1}^{\infty}\frac{2^{2k}(q^{2k+1}-p^{2k+1})}{k\,(2k+1)}\eta(2k)
\end{align*}\]
Or
\[\begin{align*}
&\sum_{k=1}^{\infty}\frac{2^{2k}(q^{2k+1}-p^{2k+1})}{k\,(2k+1)}\eta(2k)\\
&=\frac{1}{2\pi}\left[\text{Cl}_2(2p\pi)+\text{Cl}_2(\pi-2p\pi)-\text{Cl}_2(2q\pi)-\text{Cl}_2(\pi-2q\pi)\right]-\frac{1}{\pi}\left(x\ln x-x\right)\Biggr|_{p\pi}^{q\pi}
\end{align*}\]
setting \(p=1/4\) and \(q=3/10\) gives the series:
\[\large\color{DarkGreen} {\sum_{k=1}^{\infty}\frac{(6^{2k+1}-5^{2k+1})}{100^k\,k\,(2k+1)}\eta(2k)=\frac{20 \mathbf{G}}{\pi}-\frac{10}{\pi}\left[\text{Cl}_2\left(\frac{2\pi}{5}\right)+\text{Cl}_2\left(\frac{3\pi}{5}\right)\right]+20\ln\left(\frac{5^{3/10}\,e^{1/20}}{2^{1/5}\,3^{3/10}\,\pi^{1/20}}\right)}\]

一个含有Zeta函数的级数的更多相关文章

  1. 一个含有Fibonacci Number的级数

    \[\Large\displaystyle \sum_{n=0}^\infty \frac{1}{F_{2n+1}+1}=\frac{\sqrt5}{2}\] \(\Large\mathbf{Proo ...

  2. 编写一个C语言函数,要求输入一个url,输出该url是首页、目录页或者其他url

    编写一个C语言函数,要求输入一个url,输出该url是首页.目录页或者其他url 首页.目录页或者其他url 如下形式叫做首页: militia.info/ www.apcnc.com.cn/ htt ...

  3. 面试题: 已知一个含有n个不同元素的集合,要求打印其所有具有k个元素的子集(不允许有重复的)

    TX面试题2: 已知一个含有n个元素的集合,要求打印其所有具有k个元素的子集(不允许有重复的) 题目分析, 为了便于说明,不妨将问题简化一下: 已知一个盒子中有n个不同的球,分别标记为{a1,a2,. ...

  4. VS2010-如何建立并运行多个含有main函数的文件

    一.先说两个概念,解决方案与工程 在VS2010中,工程都是在解决方案管理之下的.一个解决方案可以管理多个工程,可以把解决方案理解为多个有关系或者没有关系的工程的集合. 每个应用程序都作为一个工程来处 ...

  5. Entity Framework 6 Recipes 2nd Edition(11-2)译 -> 为一个”模型定义”函数返回一个计算列

    11-3. 为一个”模型定义”函数返回一个计算列 问题 想从”模型定义”函数里返回一个计算列 解决方案 假设我们有一个员工(Employee)实体,属性有: FirstName, LastName,和 ...

  6. Entity Framework 6 Recipes 2nd Edition(11-4)译 -> 在”模型定义”函数里调用另一个”模型定义”函数

    11-4.在”模型定义”函数里调用另一个”模型定义”函数 问题 想要用一个”模型定义”函数去实现另一个”模型定义”函数 解决方案 假设我们已有一个公司合伙人关系连同它们的结构模型,如Figure 11 ...

  7. Entity Framework 6 Recipes 2nd Edition(11-6)译 -> 从一个”模型定义”函数里返回一个复杂类型

    11-6.从一个”模型定义”函数里返回一个复杂类型 问题 想要从一个”模型定义”函数返回一个复杂类型 解决方案 假设我们有一个病人(patient)和他们访客(visit)的模型,如 Figure 1 ...

  8. 如何持续集成/交付一个开源.NET函数库到Nuget.org

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:这是一个简单的入门向导,涉及到GitHub.AppVeyor和Nuget.org. 最 ...

  9. ZeroMQ接口函数之 :zmq_socket_monitor - 注册一个监控回调函数

    ZeroMQ 官方地址 :http://api.zeromq.org/4-2:zmq-socket-monitor zmq_socket_monitor(3) ØMQ Manual - ØMQ/4.1 ...

随机推荐

  1. response下载csv文件内容乱码问题

    response下载csv文件内容乱码问题 解决办法:在输出流语句第一行输出 out.write(new byte[]{(byte)0xEF, (byte)0xBB, (byte)0xBF}); Se ...

  2. apache 二级域名设置

    1. 你要拥有一个有泛域名解析的顶级域名,例如:test.com 在dns服务上设置,域名服务商都提供此服务 www.test.com      指向服务器IPtest.com          指向 ...

  3. 剑指Offer:面试题20:表示数值的字符串

    记录一下书上的写法.很整洁,每个函数的功能都显而易见.自己开始写的一堆if else语句像是一坨屎.另外注释的地方短路效应也要注意一下.总之这题还挺考察代码素质的(我这种就不存在什么素质..乱糟糟一团 ...

  4. webpack: webpack简单打包后的代码(1)

    源码 本文研究的源码地址为:https://github.com/collect-webpack/practice/tree/master/webpack-01 在本研究的前提是 entry 的配置为 ...

  5. 微信小程序实例test

    index.js //index.js //获取应用实例 const app = getApp() var pageConfig = { data: { motto: 'Hello World', u ...

  6. 第十九篇 vim编辑器的使用技巧

    vim编辑器 ~/.viminfo文件中存储了vim编辑器中常用的命令 vim编辑器共有3中模式:命令模式.末行模式和输入模式,三种模式的转换方式如下图所示: vim 文件名      # 编辑一个文 ...

  7. springboot @ComponentScan注解

    @ComponentScan 告诉Spring从哪里找到bean. 如果你的其他包都在@SpringBootApplication注解的启动类所在的包及其下级包,则你什么都不用做,SpringBoot ...

  8. Euler Sums系列(六)

    \[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...

  9. <好きになるなら> 歌詞

    あー生意気なこと言ったあと 何故かしらぽつんとしてしまう あー偶然のふり待ちぶせた ゴメンネと素直に言えるかな 帰る道はいつもカナリア 変ねこのごろ自分の気持ちがよめない もうじき風の向きが変わりそう ...

  10. 解决springboot 出现异常: java.net.BindException: Address already in use: bind

    解决springboot 出现异常: java.net.BindException: Address already in use: bind 这是引文在启动springboot 的时候,没有关闭端口 ...