\[\Large\sum_{k=1}^{\infty}\frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)\]


\(\Large\mathbf{Solution:}\)
Within the interval \(\displaystyle 0\ < x < \pi/2\,\), the logtangent function has the series representation
\[\ln(\tan x)=\ln x -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}x^{2k}\]
So, let's integrate this series over a suitable interval, such as:
\[\begin{align*}
&\int_{\pi/4}^{\pi/3}\ln(\tan x)\,\mathrm{d}x=\int_{\pi/4}^{\pi/3}\ln x\,\mathrm{d}x- \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}\int_{\pi/4}^{\pi/3}x^{2k} \,\mathrm{d}x\\
&=\left(x\ln x-x\right)\Biggr|_{\pi/4}^{\pi/3}- \sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}\left(\frac{x^{2k+1}}{2k+1 }\right)\Biggr|_{\pi/4}^{\pi/3}\\
&=\frac{\pi}{3}\ln\frac{\pi}{3}-\frac{\pi}{4}\ln\frac{\pi}{4}-\frac{\pi}{12} -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}\pi^{2k+1}}{k\,(2k+1)\,(2k)!}\left(\frac{1}{3^{2k+1}}-\frac{1}{4^{2k+1}}\right)\\
&=\pi\ln\left(\frac{\sqrt{2}\,\pi^{1/12}}{3^{1/3}}\right)-\frac{\pi}{12} -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}\pi^{2k+1}}{k\,(2k+1)\,(2k)!}\left(\frac{4^{2k+1}-3^{2k+1}}{12^{2k+1}}\right)\\
&=\pi\ln\left(\frac{\sqrt{2}\,\pi^{1/12}}{3^{1/3}\,e^{1/12}}\right) -\sum_{k=1}^{\infty}(-1)^k\frac{2^{2k}(2^{2k-1}-1)B_{2k}\pi^{2k+1}}{k\,(2k+1)\,(2k)!}\left(\frac{4^{2k+1}-3^{2k+1}}{12^{2k+1}}\right)
\end{align*}\]
Next, we use the classic Zeta function result:
\[\zeta(2n)=(-1)^{n+1}\,\frac{B_{2n}\,\pi^{2n}2^{2n-1}}{(2n)!}\]
In the re-arranged form:
\[B_{2n}= (-1)^{n+1}\frac{(2n)!}{\pi^{2n}\,2^{2n-1}}\zeta(2n)\]
to obtain
\[\pi\ln\left(\frac{\sqrt{2}\,\pi^{1/12}}{3^{1/3}\,e^{1/12}}\right) +\frac{\pi}{6}\,\sum_{k=1}^{\infty}\frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)\]
The logtangent integral is also solvable in terms of the \textbf{Clausen Function}:
\[\int_0^{\phi}\ln(\tan x)\,\mathrm{d}x=-\frac{1}{2}\text{Cl}_2(2\phi)-\frac{1}{2}\text{Cl}_2(\pi-2\phi)\]
So the previous integral is equivalent to
\[\int_{\pi/4}^{\pi/3}\ln(\tan x)\mathrm{d}x=-\frac{1}{2}\text{Cl}_2\left(\frac{2\pi}{3}\right)-\frac{1}{2}\text{Cl}_2\left(\frac{\pi}{3}\right)+\text{Cl}_2\left(\frac{\pi}{2}\right)= \mathbf{G}-\frac{5}{6}\text{Cl}_2\left(\frac{\pi}{3}\right)\]
Since
\[\text{Cl}_2\left(\frac{2\pi}{3}\right)=\frac{2}{3}\text{Cl}_2\left(\frac{\pi}{3}\right)~,~\text{Cl}_2\left(\frac{\pi}{2}\right)=\mathbf{G}\]
Equating the two different evaluations of the logtangent integral, we get the final result:
\[\Large\boxed{\displaystyle \sum_{k=1}^{\infty}\frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}\zeta(2k)=\color{Blue} {\frac{6\mathbf{G}}{\pi}-\frac{5}{\pi}\text{Cl}_2\left(\frac{\pi}{3}\right)+ 6\ln\left(\frac{3^{1/3}\,e^{1/12}}{\sqrt{2}\,\pi^{1/12}}\right)}}\]
If expressed in terms of the Eta function (alternating Zeta function), since the logtangent series then reduces to:
\[\ln(\tan x) = \ln x + \sum_{k=1}^{\infty}\frac{2^{2k}\,\eta(2k)}{\pi^{2k}\,k}x^{2k}\]
So, for \(\displaystyle 0 < p < q <1/2\,\) and \(\displaystyle p\, ,q\in \mathbb{Q}\,\), we have
\[\begin{align*}
\int_{p\pi}^{q\pi}\ln(\tan x)\,\mathrm{d}x&=\frac{1}{2}\left[\text{Cl}_2(2p\pi)+\text{Cl}_2(\pi-2p\pi)-\text{Cl}_2(2q\pi)-\text{Cl}_2(\pi-2q\pi)\right]\\
&=\left(x\ln x-x\right)\Biggr|_{p\pi}^{q\pi}+\pi \sum_{k=1}^{\infty}\frac{2^{2k}(q^{2k+1}-p^{2k+1})}{k\,(2k+1)}\eta(2k)
\end{align*}\]
Or
\[\begin{align*}
&\sum_{k=1}^{\infty}\frac{2^{2k}(q^{2k+1}-p^{2k+1})}{k\,(2k+1)}\eta(2k)\\
&=\frac{1}{2\pi}\left[\text{Cl}_2(2p\pi)+\text{Cl}_2(\pi-2p\pi)-\text{Cl}_2(2q\pi)-\text{Cl}_2(\pi-2q\pi)\right]-\frac{1}{\pi}\left(x\ln x-x\right)\Biggr|_{p\pi}^{q\pi}
\end{align*}\]
setting \(p=1/4\) and \(q=3/10\) gives the series:
\[\large\color{DarkGreen} {\sum_{k=1}^{\infty}\frac{(6^{2k+1}-5^{2k+1})}{100^k\,k\,(2k+1)}\eta(2k)=\frac{20 \mathbf{G}}{\pi}-\frac{10}{\pi}\left[\text{Cl}_2\left(\frac{2\pi}{5}\right)+\text{Cl}_2\left(\frac{3\pi}{5}\right)\right]+20\ln\left(\frac{5^{3/10}\,e^{1/20}}{2^{1/5}\,3^{3/10}\,\pi^{1/20}}\right)}\]

一个含有Zeta函数的级数的更多相关文章

  1. 一个含有Fibonacci Number的级数

    \[\Large\displaystyle \sum_{n=0}^\infty \frac{1}{F_{2n+1}+1}=\frac{\sqrt5}{2}\] \(\Large\mathbf{Proo ...

  2. 编写一个C语言函数,要求输入一个url,输出该url是首页、目录页或者其他url

    编写一个C语言函数,要求输入一个url,输出该url是首页.目录页或者其他url 首页.目录页或者其他url 如下形式叫做首页: militia.info/ www.apcnc.com.cn/ htt ...

  3. 面试题: 已知一个含有n个不同元素的集合,要求打印其所有具有k个元素的子集(不允许有重复的)

    TX面试题2: 已知一个含有n个元素的集合,要求打印其所有具有k个元素的子集(不允许有重复的) 题目分析, 为了便于说明,不妨将问题简化一下: 已知一个盒子中有n个不同的球,分别标记为{a1,a2,. ...

  4. VS2010-如何建立并运行多个含有main函数的文件

    一.先说两个概念,解决方案与工程 在VS2010中,工程都是在解决方案管理之下的.一个解决方案可以管理多个工程,可以把解决方案理解为多个有关系或者没有关系的工程的集合. 每个应用程序都作为一个工程来处 ...

  5. Entity Framework 6 Recipes 2nd Edition(11-2)译 -> 为一个”模型定义”函数返回一个计算列

    11-3. 为一个”模型定义”函数返回一个计算列 问题 想从”模型定义”函数里返回一个计算列 解决方案 假设我们有一个员工(Employee)实体,属性有: FirstName, LastName,和 ...

  6. Entity Framework 6 Recipes 2nd Edition(11-4)译 -> 在”模型定义”函数里调用另一个”模型定义”函数

    11-4.在”模型定义”函数里调用另一个”模型定义”函数 问题 想要用一个”模型定义”函数去实现另一个”模型定义”函数 解决方案 假设我们已有一个公司合伙人关系连同它们的结构模型,如Figure 11 ...

  7. Entity Framework 6 Recipes 2nd Edition(11-6)译 -> 从一个”模型定义”函数里返回一个复杂类型

    11-6.从一个”模型定义”函数里返回一个复杂类型 问题 想要从一个”模型定义”函数返回一个复杂类型 解决方案 假设我们有一个病人(patient)和他们访客(visit)的模型,如 Figure 1 ...

  8. 如何持续集成/交付一个开源.NET函数库到Nuget.org

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:这是一个简单的入门向导,涉及到GitHub.AppVeyor和Nuget.org. 最 ...

  9. ZeroMQ接口函数之 :zmq_socket_monitor - 注册一个监控回调函数

    ZeroMQ 官方地址 :http://api.zeromq.org/4-2:zmq-socket-monitor zmq_socket_monitor(3) ØMQ Manual - ØMQ/4.1 ...

随机推荐

  1. 19年7月份面试7家公司,整理的java面试题(答案自行百度解决,也是个学习的过程)

    Dubbo与注册中心Zookeeper了解多少ConcurrentHashMap的原理 集合 HashMap 和 HashTable和ConcurrentHashMap的原理以及区别HashMap初始 ...

  2. Flink系统配置

    Flink 系统配置 Flink 提供了多个配置参数,用于调整Flink的行为与性能,所有参数均在flink-config.yaml 文件中.下面我们介绍一下几个主要配置. Java and Clas ...

  3. win10显示“没有有效的IP地址”

    可能你没有新建该宽带连接!!!(本人就是蠢到如此地步了_(:з)∠)_)

  4. NOIP做题练习(day1)

    A - Xenny and Alternating Tasks 题面 题解 枚举第一天是谁做,将两个答案取\(min\)即可. 代码 #include <iostream> #includ ...

  5. C语言是菜鸟和大神的分水岭

    作为一门古老的编程语言,C语言已经坚挺了好几十年了,初学者从C语言入门,大学将C语言视为基础课程.不管别人如何抨击,如何唱衰,C语言就是屹立不倒:Java.C#.Python.PHP.Perl 等都有 ...

  6. doGet与doPost简单理解

    get和post是http协议的两种方法 这两种方法有着本质的区别,get只有一个流,参数附加在url后,大小个数有严格限制且只能是字符串.Post的参数是通过另外的流传递,不通过url,所以可以很大 ...

  7. jsoup学习待续

    1.Jsoup简介 Jsoup是一个java html解析器.它是一个用于解析HTML文档的java库.Jsoup提供api来从URL或HTML文件中提取和操作数据.它使用DOM,CSS和类似 Jqu ...

  8. 高斯消元-bzoj1013-球形空间产生器

    This article is made by Jason-Cow.Welcome to reprint.But please post the writer's address. http://ww ...

  9. 1012 The Best Rank

    1012 The Best Rank 1. 注意点 一名同学同样排名下的科目优先级问题 不同同学分数相同时排名相同,注意 排名不是 1 1 2 3 4 这种, 而是 1 1 3 4 5 注意到有些同学 ...

  10. PHP 操作oracle数据库,select,insert into ,delete,update等

    建完数据库,下面就是操作数据库啦 程序的根源无非是增删改查 首先最基础的查询 public function obtainduo(){ header("content-type:text/h ...