从头学pytorch(四) softmax回归实现
FashionMNIST数据集共70000个样本,60000个train,10000个test.共计10种类别.

通过如下方式下载.
mnist_train = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
train=True, download=True,
transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
train=False, download=True,
transform=transforms.ToTensor())
softmax从零实现
- 数据加载
- 初始化模型参数
- 模型定义
- 损失函数定义
- 优化器定义
- 训练
数据加载
import torch
import torchvision
import torchvision.transforms as transforms
mnist_train = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
train=True, download=True,
transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
train=False, download=True,
transform=transforms.ToTensor())
batch_size = 256
num_workers = 4 # 多进程同时读取
train_iter = torch.utils.data.DataLoader(
mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(
mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
初始化模型参数
num_inputs = 784 # 图像是28 X 28的图像,共784个特征
num_outputs = 10
W = torch.tensor(np.random.normal(
0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)
W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
模型定义
记忆要点:沿着dim方向.行为维度0,列为维度1. 沿着列的方向相加,即对每一行的元素相加.
def softmax(X): # X.shape=[样本数,类别数]
X_exp = X.exp()
partion = X_exp.sum(dim=1, keepdim=True) # 沿着列方向求和,即对每一行求和
#print(partion.shape)
return X_exp/partion # 广播机制,partion被扩展成与X_exp同shape的,对应位置元素做除法
def net(X):
# 通过`view`函数将每张原始图像改成长度为`num_inputs`的向量
return softmax(torch.mm(X.view(-1, num_inputs), W) + b)
损失函数定义
假设训练数据集的样本数为\(n\),交叉熵损失函数定义为
\]
其中\(\boldsymbol{\Theta}\)代表模型参数。同样地,如果每个样本只有一个标签,那么交叉熵损失可以简写成\(\ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)}\)。
def cross_entropy(y_hat, y):
y_hat_prob = y_hat.gather(1, y.view(-1, 1)) # ,沿着列方向,即选取出每一行下标为y的元素
return -torch.log(y_hat_prob)
https://pytorch.org/docs/stable/torch.html

gather()沿着维度dim,选取索引为index的元素
优化算法定义
def sgd(params, lr, batch_size):
for param in params:
param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data
准确度评估函数
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
训练
- 读入batch_size个样本
- 前向传播,计算预测值
- 与真值相比,计算loss
- 反向传播,计算梯度
- 更新各个参数
如此循环往复.
num_epochs, lr = 5, 0.1
def train():
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
#print(X.shape,y.shape)
y_hat = net(X)
l = cross_entropy(y_hat, y).sum() # 求loss
l.backward() # 反向传播,计算梯度
sgd([W, b], lr, batch_size) # 根据梯度,更新参数
W.grad.data.zero_() # 清空梯度
b.grad.data.zero_()
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train_acc %.3f,test_acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum/n, test_acc))
train()
输出如下:
epoch 1, loss 0.7848, train_acc 0.748,test_acc 0.793
epoch 2, loss 0.5704, train_acc 0.813,test_acc 0.811
epoch 3, loss 0.5249, train_acc 0.825,test_acc 0.821
epoch 4, loss 0.5011, train_acc 0.832,test_acc 0.821
epoch 5, loss 0.4861, train_acc 0.837,test_acc 0.829
softmax的简洁实现
- 数据加载
- 模型定义及初始化模型参数
- 损失函数定义
- 优化器定义
- 训练
数据读取
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
import torchvision
import torchvision.transforms as transforms
mnist_train = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
train=True, download=True,
transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST',
train=False, download=True,
transform=transforms.ToTensor())
batch_size = 256
num_workers = 4 # 多进程同时读取
train_iter = torch.utils.data.DataLoader(
mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(
mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
模型定义及模型参数初始化
num_inputs = 784 # 图像是28 X 28的图像,共784个特征
num_outputs = 10
class LinearNet(nn.Module):
def __init__(self,num_inputs,num_outputs):
super(LinearNet,self).__init__()
self.linear = nn.Linear(num_inputs,num_outputs)
def forward(self,x): #x.shape=(batch,1,28,28)
return self.linear(x.view(x.shape[0],-1)) #输入shape应该是[,784]
net = LinearNet(num_inputs,num_outputs)
torch.nn.init.normal_(net.linear.weight,mean=0,std=0.01)
torch.nn.init.constant_(net.linear.bias,val=0)
没有什么要特别注意的,注意一点,由于self.linear的input size为[,784],所以要对x做一次变形x.view(x.shape[0],-1)
损失函数定义
torch里的这个损失函数是包括了softmax计算概率和交叉熵计算的.
loss = nn.CrossEntropyLoss()
优化器定义
optimizer = torch.optim.SGD(net.parameters(),lr=0.01)
训练
精度评测函数
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
训练
- 读入batch_size个样本
- 前向传播,计算预测值
- 与真值相比,计算loss
- 反向传播,计算梯度
- 更新各个参数
如此循环往复.
num_epochs = 5
def train():
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X,y in train_iter:
y_hat=net(X) #前向传播
l = loss(y_hat,y).sum()#计算loss
l.backward()#反向传播
optimizer.step()#参数更新
optimizer.zero_grad()#清空梯度
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train()
输出
epoch 1, loss 0.0054, train acc 0.638, test acc 0.681
epoch 2, loss 0.0036, train acc 0.716, test acc 0.724
epoch 3, loss 0.0031, train acc 0.749, test acc 0.745
epoch 4, loss 0.0029, train acc 0.767, test acc 0.759
epoch 5, loss 0.0028, train acc 0.780, test acc 0.770
从头学pytorch(四) softmax回归实现的更多相关文章
- 【动手学pytorch】softmax回归
一.什么是softmax? 有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值.具体公式表示为: softmax回归本质上也是一种对数据的估计 二.交叉 ...
- 从头学pytorch(一):数据操作
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3 ...
- 从头学pytorch(十四):lenet
卷积神经网络 在之前的文章里,对28 X 28的图像,我们是通过把它展开为长度为784的一维向量,然后送进全连接层,训练出一个分类模型.这样做主要有两个问题 图像在同一列邻近的像素在这个向量中可能相距 ...
- 从头学pytorch(六):权重衰减
深度学习中常常会存在过拟合现象,比如当训练数据过少时,训练得到的模型很可能在训练集上表现非常好,但是在测试集上表现不好. 应对过拟合,可以通过数据增强,增大训练集数量.我们这里先不介绍数据增强,先从模 ...
- 从头学pytorch(三) 线性回归
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据 ...
- 从头学pytorch(十九):批量归一化batch normalization
批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练 ...
- 从头学pytorch(二十):残差网络resnet
残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路 ...
- 从头学pytorch(五) 多层感知机及其实现
多层感知机 上图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit).由于输入层不涉及计算,图3.3中的多层感知机的层数为2.由图3.3可见,隐藏 ...
- 从头学pytorch(二) 自动求梯度
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...
随机推荐
- Linux安装MATLAB2016a
一.准备工具 matlab2016a的镜像文件和破解文件(链接: https://pan.baidu.com/s/1cxtlOM 密码: cj2u) Linux系统,我用的是deepin15.4,和一 ...
- vuecli+axios的post请求传递参数异常
大多数的web服务器只能识别form的post的请求,即请求头Content-Type为’application/x-www-form-urlencoded‘ axios.defaults.heade ...
- E - Serge and Dining Room
https://codeforces.com/contest/1180/problem/E 转载自他人博客 题意:有nn个菜肴,有mm个小朋友,每个菜肴的价格为aiai,每个小朋友有bibi元钱,小朋 ...
- html 未选择复选框不上传
问题 之前就遇到类似的问题,在一个列表中,如果有复选框,并且不选中 会导致这个复选框不上传,导致后台接收不到复选框数据 解决方法我想到的就是 <td> <input type=&qu ...
- Iris_xorm
xorm表基本操作及高级操作 表结构基本操作 对表结构的操作最常见的操作是查询和统计相关的方法,我们首先来看相关实现: 条件查询 Id值查询:参数接收主键字段的值.例如: var user User ...
- Java compareTo的用法
compareTo() 方法用于将 Number 对象与方法的参数进行比较.可用于比较 Byte, Long, Integer等. 该方法用于两个相同数据类型的比较,两个不同类型的数据不能用此方法来比 ...
- 计算几何-Ang-Rad-Vector
This article is made by Jason-Cow.Welcome to reprint.But please post the article's address. 旋转,跳跃,梦境 ...
- Python(二):做题函数记录
一,10进制 转 2,8,16进制 bin(<int>) ,oct(<int>),hex(<int>) 输出示例 '0b10011010010' '0o2322' ...
- oracle-数据库被注入恶意攻击程序的案例恢复
问题描述: Oracle数据库由于重启之后无法正常启动,tab$被清空(ORA-600 16703故障解析—tab$表被清空),导致数据库启动异常 ORA-600 16703报错 一.检测方法: 如下 ...
- 数据库程序接口——JDBC——功能第一篇——第一个程序
流程图 综述 从零开始搭建JDBC环境.通过创建Java项目,在项目中,通过java程序执行SQL,并处理返回的结果.本文通过执行 select 1 from dual 语句来测试,并输出相结果集.首 ...