(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦

Catalog

Problem:Portal传送门

 原题目描述在最下面。

Solution:

 一看矩阵快速幂,再一看怎么多一个变项?\(⌊ \frac{p}{n}⌋\)?

 我去,\(⌊ \frac{p}{n}⌋\)这不是前几天写过的一道除法分块经典题吗?

 关于除法分块,请看这里:GYM101652

 然后,就没有然后了~

AC_Code:

#include<bits/stdc++.h>
#define mme(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int MXN = 5e5+7;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
int n;
LL A,B,C,D,P;
struct lp{
LL ar[3][3];
}aa, bb, cc;
lp exe(lp a,lp b,int n,int m,int h){
lp c; memset(c.ar,0,sizeof(c.ar));
for(int k = 0; k < m; ++k){
for(int i = 0; i < n; ++i){
if(a.ar[i][k] == 0) continue;
for(int j = 0; j < h; ++j){
if(b.ar[k][j] == 0) continue;
c.ar[i][j] += a.ar[i][k] * b.ar[k][j];
c.ar[i][j] %= MOD;
}}}
return c;
}
lp ksm(lp a, LL b, int n){
lp ret;
for(int i=0;i<n;++i) for(int j=0;j<n;++j) ret.ar[i][j]=(i==j);
while(b>0){
if(b&1) ret=exe(ret, a, n, n, n);
a = exe(a, a, n, n, n); b >>= 1;
}
return ret;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("E://ADpan//in.in", "r", stdin);
//freopen("E://ADpan//out.out", "w", stdout);
#endif
int tc = 0;
int tim;
scanf("%d", &tim);
while(tim--){
scanf("%lld%lld%lld%lld%lld%d", &A,&B,&C,&D,&P,&n);
if(n == 1){
printf("%lld\n", A);
continue;
}else if(n == 2){
printf("%lld\n", B);
continue;
}else if(n == 3){
printf("%lld\n", (B*D%MOD+A*C%MOD+P/3)%MOD);
continue;
}
/*aa.ar[3][3] = {
{D,1LL,0LL},
{C,0LL,0LL},
{xLL,0LL,1LL},
};*/
memset(aa.ar,0,sizeof(aa.ar));
memset(bb.ar,0,sizeof(bb.ar));
aa.ar[0][0]=D;
aa.ar[1][0]=C;
aa.ar[0][1]=1;
aa.ar[2][2]=1;
bb.ar[0][0]=B;
bb.ar[0][1]=A;
bb.ar[0][2]=1;
/*bb.ar[3][3] = {
{B,A,1},
};*/ //这是参考大佬的写法一
for(LL l = 3, r; l <= n; l = r + 1){
if(P/l) r = min(P/(P/l),n*1LL);
else r = n;
aa.ar[2][0] = P/l;
cc = ksm(aa, r-l+1, 3);
bb = exe(bb, cc, 3, 3, 3);
} /*这是我本来繁琐的写法
for(LL l = 3, r; l <= P; l = r + 1){
r = min(P/(P/l),n*1LL);
aa.ar[2][0] = P/l;
cc = ksm(aa, r-l+1, 3);
bb = exe(bb, cc, 3, 3, 3);
if(r == n * 1LL)break;
}
if(P <= n - 1){
LL m = n - (P+1)+1;
aa.ar[2][0] = 0;
if(P<3)m = n-2;
cc = ksm(aa, m, 3);
bb = exe(bb, cc, 3, 3, 3);
}*/
printf("%lld\n", bb.ar[0][0]);
}
return 0;
}

Problem Description:

模板:

typedef vector<long long> vec;
typedef vector<vec > mat; mat Mul(mat a, mat b) {
mat c(a.size(), vec(b[0].size()));
for(int k = 0; k < b.size(); ++k) {
for(int i = 0; i < a.size(); ++i) {
if(a[i][k] == 0) continue;
for(int j = 0; j < b[0].size(); ++j) {
c[i][j] = (c[i][j] + a[i][k] * b[k][j])%mod;
}
}
}
return c;
}
mat mat_ksm(mat a, LL b) {
mat res(a.size(), vec(a.size()));
for(int i = 0; i < a.size(); ++i) res[i][i] = 1;
while(b) {
if(b&1) res = Mul(res, a);
a = Mul(a, a);
b >>= 1;
}
return res;
}
LL fib_n(LL n) {
mat a(2, vec(2));
a[0][0] = 1; a[0][1] = 1;
a[1][0] = 1; a[1][1] = 0;
a = mat_ksm(a, n);
return a[1][0];
}

HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板的更多相关文章

  1. 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)

    Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...

  2. HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  3. 《Linear Algebra and Its Applications》-chaper2-矩阵代数-分块矩阵

    分块矩阵的概念: 在矩阵的实际应用中,为了形式的更加简化我们将一个较大的矩阵的内部进行一定的划分,使之成为几个小矩阵,然后在表大矩阵的时候,矩阵的内部元素就用小矩阵代替. 进行了这一步简化,我们就要分 ...

  4. 求幂大法,矩阵快速幂,快速幂模板题--hdu4549

    hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 ...

  5. HDU1757-A Simple Math Problem,矩阵快速幂,构造矩阵水过

    A Simple Math Problem 一个矩阵快速幂水题,关键在于如何构造矩阵.做过一些很裸的矩阵快速幂,比如斐波那契的变形,这个题就类似那种构造.比赛的时候手残把矩阵相乘的一个j写成了i,调试 ...

  6. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  7. P2424 约数和 && 真丶除法分块

    P2424 约数和 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f ...

  8. 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵

    题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: 每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K 接下 ...

  9. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

随机推荐

  1. vs code的简单插件

    Auto Close Tag VSCode Color Info Mithril Emmet support for VS Code Open HTML in Default Browser open ...

  2. HTML5中的Canvas和SVG

    Canvas 和 SVG 都允许我们在浏览器中创建图形,但是它们在根本上是不同的. 1 SVG SVG 是一种使用 XML 描述 2D 图形的语言. SVG 基于 XML,这意味着 SVG DOM 中 ...

  3. c#开发应避免的几个小滥用

    一 String和StringBuilder              少量的字符串操作不宜采用StringBuilder.      由于string是不可变得对象,对于string的叠加,每次操作 ...

  4. CentOS7用rpmforge源!

    确认系统是否安装了priority这个yum的插件,这个插件用来保证安装软件时候软件仓库先后次序,一般是默认先从官方base或者镜像安装,然后从社区用户contribute的软件中安装,再从第三方软件 ...

  5. java中的javap命令(工作中补充的知识)

    背景: 上周针对某信得压力测试demo进行场景复现,但是只提供了class文件,只能通过反编译的软件进行查看,在复现的过程中报错某某某行,这里我以xx行代替,因为是class文件,所以并不能确定具体到 ...

  6. vs设置html的模板快

    打开vs编辑器,点击文件-->首选项-->用户代码片段 之后选择先对应的编辑器模板 进入里面编写相对应的代码块 之后直接在编辑器中调用.

  7. 使ie6/7/8支持css3的方法

    使用PIE.htc让IE6\7\8支持CSS3部分属性 包括圆角,阴影,背景渐变等效果 下载地址 http://css3pie.com/download/ 需要注意几点的是 第一,pie是以相对页面h ...

  8. 问题1-/usr/bin/python: No module named virtualenvwrapper

    操作系统:Ubuntu 问题:创建虚拟环境时,出现:/usr/bin/python: No module named virtualenvwrapper 解决方法: 1.切换到用户家目录 2.打开隐藏 ...

  9. ArcGis Python常用脚本

    ArcGis Python脚本——ArcGIS 中使用的 Python 是什么版本 ArcGis Python脚本——批量添加字段 ArcGis Python脚本——批量删除字段 ArcGis Pyt ...

  10. docker容器和宿主机时间不一致的问题

    第1种:复制宿主机的localtime文件,到容器里docker cp /etc/localtime threg:/etc/ 注:这里 threg为容器名称,复制完后需重启容器 第2种在构建docke ...