hdu4352-XHXJ's LIS状压DP+数位DP
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦
题意:传送门
原题目描述在最下面。
在区间内把整数看成一个阿拉伯数字的集合,此集合中最长严格上升子序列的长度为k的个数。
思路:
看了大神的博客感觉这东西是真难想到。状压dp预处理状态,数位dp计算答案。
nex[i][j]
表示在状态i(状态i的二进制中为1表示这个数存在LIS中,反之不存在),选取加入第j的数字之后的状态。
然后这题k最大也只有10,因为只有10个数字。所以状态只有1024种。这题还要处理一下前导0。
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int mod = 1e9;
const int N = (int)1e2+7;
LL n, m, k;
int one[1<<10], ar[30], nex[1<<10][10];
LL dp[30][1<<10][11];
int get(int x, int y){
for(int i = y; i < 10; ++i){
if(x&(1<<i)) return (x^(1<<i))|(1<<y);
}
return x|(1<<y);
}
void init(){
for(int i = 0; i < (1<<10); ++i){
for(int j = 0; j < 10; ++j){
if(i&(1<<j))one[i]++;
nex[i][j] = get(i, j);
}
}
memset(dp,-1,sizeof(dp));
}
LL dfs(int pos, int sta, bool lead, bool limit){
if(pos == -1)return one[sta] == k;
if(!limit&&!lead&&dp[pos][sta][k] != -1) return dp[pos][sta][k];
int up = limit? ar[pos]: 9;
LL sum = 0;
for(int i = 0; i <= up; ++i){
sum +=dfs(pos-1,(lead&&i==0)?0:nex[sta][i],lead&i==0,limit&&i==ar[pos]);
}
if(!limit&&!lead)dp[pos][sta][k] = sum;
return sum;
}
LL solve(LL x){
int pos = 0;
while(x){ar[pos++]=x%10;x/=10;}
return dfs(pos-1,0,1,1);
}
int main(){
init();
int tim,tca=0;
scanf("%d", &tim);
while(tim--){
scanf("%lld%lld%lld", &n, &m, &k);
printf("Case #%d: %lld\n", ++tca, solve(m)-solve(n-1));
}
return 0;
}
####原题目描述:

hdu4352-XHXJ's LIS状压DP+数位DP的更多相关文章
- HDU 4352 XHXJ's LIS - 状压dp + LIS
传送门 题目大意: 求[l, r]中数位的最长上升序列恰好为k的数的个数. 题目分析: 首先要理解\(o(nlogn)\)求LIS问题的思路,每次寻找第一个大于等于的数将其更改. 设dp[pos][s ...
- hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]
统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...
- hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)
#define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...
- hdu4352 XHXJ's LIS(数位dp)
题目传送门 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU4352 XHXJ's LIS 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 题目大意: 求区间 \([L,R]\) 范围内最长上升子序列(Longest increasin ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp
题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...
- HDU 4336-Card Collector(状压,概率dp)
题意: 有n种卡片,每包面里面,可能有一张卡片或没有,已知每种卡片在面里出现的概率,求获得n种卡片,需要吃面的包数的期望 分析: n很小,用状压,以前做状压时做过这道题,但概率怎么推的不清楚,现在看来 ...
- CF1238E.Keyboard Purchase 题解 状压/子集划分DP
作者:zifeiy 标签:状压DP,子集划分DP 题目链接:https://codeforces.com/contest/1238/problem/E 题目大意: 给你一个长度为 \(n(n \le ...
- P4547 [THUWC2017]随机二分图(状压,期望DP)
期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...
随机推荐
- 获取min-max之间的随机数
private static String getRandom(int min, int max){ Integer random =(int)(min+Math.random()*(max-min+ ...
- 【LeetCode 25】K 个一组翻转链表
题目链接 [题解] 模拟就好. 就k个k个节点地翻转. 每个节点都把next域指向它前面那个节点 修改完之后把这个节点前面的那个节点的next域改成这一段的最后一个节点. 然后把这一段最左边的那个节点 ...
- mac 堡垒机传文件
安装zssh brew install zssh 上传文件 zssh登陆上跳板机 在跳板机上ssh到相应服务器 在服务器上cd至相应要放上传文件的目录 rz -bye //在远程服务器的相应目录上运行 ...
- ubuntu ceph集群安装以及简单使用
ubuntu ceph安装以及使用 1.安装环境 本文主要根据官方文档使用ubuntu14.04安装ceph集群,并且简单熟悉其基本操作.整个集群包括一个admin节点(admin node,主机名为 ...
- 22. Jmeter NON GUI模式
一般情况下我们都是在NonGUI模式下运行jmeter.这样做有两个好处 节省系统资源,能够产生更大的负载 可以通过命令行参数对测试场景进行更精细的配置 需求:模拟5个用户同时访问百度首页的情况 步骤 ...
- HDU 6628 permutation 1 (暴力)
2019 杭电多校 5 1005 题目链接:HDU 6628 比赛链接:2019 Multi-University Training Contest 5 Problem Description A s ...
- FP-Tree -关联规则挖掘算法(转载)
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支 支持度和置信度 严格地说Apriori和FP- ...
- redis 部署方式及常见特性
单机部署 redis的单机部署 如何保证redis的高并发和高可用? redis的主从复制原理?redis的哨兵原理? redis单机能承载多高并发?如果单机扛不住如何扩容扛更多的并发? redis会 ...
- CF#541 D. Gourmet choice /// BFS 拓扑
题目大意: 给定n m 第一行有n个数 第二行有m个数 接下来n行每行m列 有 = < > 位于 i j 的符号表示 第一行第i个数与第二行第j个数的大小关系 1.将n+m个数 当做按顺序 ...
- Django(十四)课程机构列表页数据展示,Django的modelform,关于urls的重新分发
关于urls的重新分发: 如果所有url都配置在根路径的urls.py里,会特别多,而且也不易于修改,Django框架里支持urls的重新分发: 1.在根路径的urls配置上: PS:namespac ...