Apache Kafka(八)- Kafka Delivery Semantics for Consumers
Kafka Delivery Semantics
在Kafka Consumer中,有3种delivery semantics,分别为:至多一次(at most once)、至少一次(at least once)、以及准确一次(exactly once),下面我们分别介绍这3种Delivery 语义。
1. At Most Once
在message batch在被consumer接收后,立即commit offsets。此时若是在消息处理逻辑中出现异常,则未被处理的消息会丢失(不会再次被读取)。
此场景一个例子如下图:
此例流程如下:
- Consumer读一个batch的消息
- 在接收到消息后,Consumer commits offsets
- Consumer 处理数据,例如发送邮件,但是此时一个batch中的最后两条消息由于consumer异常宕机而未被正常处理
- Consumer 重启并重新开始读数据。但是此时由于已经committed offset,所以consumer会在最新的offset处读一个batch的消息,之前上一个batch中由于异常而未被处理的消息会丢失
所以at most once 会有丢失数据的风险,但若是应用可以承受丢失数据的风险,则可以使用此方式。
2. At Least Once
在消息被consumer接收并处理后,offsets才被 commit。若是在消息处理时发生异常,则消息会被重新消费。也就是说,会导致消息被重复处理。
At Least Once 是默认使用的语义,在这种情况下,需要保证应用是idempotent 类型(处理重复的消息不会对应用产生影响)。
此场景一个例子如下:
此示例流程如下:
- Consumer 读一个batch的消息
- 在接收到消息并正常处理
- 在consumer 正常处理消息完毕后,commits offset
- 继续读并处理下一个batch 的消息。若是在此过程中发生异常(例如consumer 重启),则consumer会从最近的 offset 开始读一个batch的消息并处理。所以此时会导致有重复消息被处理(此例中为4263、4264、4265)
3. Exactly once
此语义较难实现,在kafka中仅能在Kafka => Kafka的工作流中,通过使用Kafka Stream API 实现。对于Kafka => Sink 的工作流,请使用 idempotent consumer。
对于大部分应用程序,我们应使用at least once processing,并确保consumer端的transformation/processing 是idempotent类型。
4. 构建 idempotent consumer
一个idempotent consumer可以在处理重复消息时,不影响整个应用的逻辑。在ElasticSearch 中,通过一个_id 字段唯一识别一条消息。所以在这个场景下,为了实现idempotent consumer,我们需要对同样_id字段的消息做同样的处理。
之前给出的Elastic Search Consumer的例子中,每条消息的 _id 都是默认随机生成的,也就是说:若是处理之前重复的消息,生成的id也是一条新的随机_id,此行为不符合一个idempotent consumer。对此,我们可以自定义一个_id 模式,修改代码如下:
// poll for new data
while(true){
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofMinutes(100)); for(ConsumerRecord record : records) { // construct a kafka generic ID
String kafka_generic_id = record.topic() + "_" + record.partition() + "_" + record.offset(); // where we insert data into ElasticSearch
IndexRequest indexRequest = new IndexRequest(
"kafkademo"
).id(kafka_generic_id).source(record.value(), XContentType.JSON); IndexResponse indexResponse = client.index(indexRequest, RequestOptions.DEFAULT);
String id = indexResponse.getId(); logger.info(id); try {
Thread.sleep(1000); // introduce a small delay
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
打印出id结果为:
可以看到新的 id 由 kafka topic + partition + offset 这3 部分组成,可以唯一定位一个 record。所以即使重复处理一条record,它发往 ElasticSearch 的 id 也是一样的(即处理逻辑一样)。在这个场景下,即为一个imdepotent consumer。
Apache Kafka(八)- Kafka Delivery Semantics for Consumers的更多相关文章
- Apache Kafka安全| Kafka的需求和组成部分
1.目标 - 卡夫卡安全 今天,在这个Kafka教程中,我们将看到Apache Kafka Security 的概念 .Kafka Security教程包括我们需要安全性的原因,详细介绍加密.有了这 ...
- Apache ZooKeeper在Kafka中的角色 - 监控和配置
1.目标 今天,我们将看到Zookeeper在Kafka中的角色.本文包含Kafka中需要ZooKeeper的原因.我们可以说,ZooKeeper是Apache Kafka不可分割的一部分.在了解Zo ...
- Message Delivery Semantics
4.6 Message Delivery Semantics Now that we understand a little about how producers and consumers wor ...
- kafka实战教程(python操作kafka),kafka配置文件详解
kafka实战教程(python操作kafka),kafka配置文件详解 应用往Kafka写数据的原因有很多:用户行为分析.日志存储.异步通信等.多样化的使用场景带来了多样化的需求:消息是否能丢失?是 ...
- CentOS 7部署Kafka和Kafka集群
CentOS 7部署Kafka和Kafka集群 注意事项 需要启动多个shell脚本交互客户端进行验证,运行中的客户端不要停止. 准备工作: 安装java并设置java环境变量,在`/etc/prof ...
- Spark Streaming + Kafka整合(Kafka broker版本0.8.2.1+)
这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接 ...
- 【Kafka】Kafka集群环境搭建
目录 一.初始环境准备 二.下载安装包并上传解压 三.修改配置文件 四.启动ZooKeeper 五.启动Kafka集群 一.初始环境准备 必须安装了JDK和ZooKeeper,并保证Zookeeper ...
- Kafka(3)--kafka消息的存储及Partition副本原理
消息的存储原理: 消息的文件存储机制: 前面我们知道了一个 topic 的多个 partition 在物理磁盘上的保存路径,那么我们再来分析日志的存储方式.通过 [root@localhost ~]# ...
- Kafka记录-Kafka简介与单机部署测试
1.Kafka简介 kafka-分布式发布-订阅消息系统,开发语言-Scala,协议-仿AMQP,不支持事务,支持集群,支持负载均衡,支持zk动态扩容 2.Kafka的架构组件 1.话题(Topic) ...
随机推荐
- 关于Java8中的Comparator那些事
在前面一篇博文中,对于java中的排序方法进行比较和具体剖析,主要是针对 Comparator接口和 Comparable接口,无论是哪种方式,都需要实现这个接口,并且重写里面的 方法.Java8中对 ...
- Linux c++ string转其他类型
#include <iostream> #include <sstream> #include <string> using namespace std; temp ...
- Spring Cloud 5大组件
服务发现——Netflix Eureka 客服端负载均衡——Netflix Ribbon 断路器——Netflix Hystrix 服务网关——Netflix Zuul 分布式配置——Spring C ...
- 基于Dapper的开源Lambda扩展LnskyDB 3.0已支持Mysql数据库
LnskyDB LnskyDB是基于Dapper的Lambda扩展,支持按时间分库分表,也可以自定义分库分表方法.而且可以T4生成实体类免去手写实体类的烦恼.,现在已经支持MySql和Sql serv ...
- Mac 多版本 JDK 管理
Mac 多版本 JDK 管理 1. 准备 ZSH Homebrew Oracle JDK 1.8 安装包(Homebrew 官方源和第三方源不再提供老版本的 Oracle JDK) 2. 安装 JDK ...
- Leetcode Week4 Find Minimum in Rotated Sorted Array II
Question Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforeha ...
- Numpy | ndarray数组基本操作
搞不懂博客园表格的排版... 说明: 0 ndarray :多维数组对象 1 np :import numpy as np 2 nda :表示数组的名称 1 生成数组 函数名 描述 np.array ...
- 拦截器 Filter : js、css、jpg、png等静态资源不被拦截解决方案
方案一: web.xml配置文件拦截范围缩小 ,没有必要 /*的配置拦截项目下所有资源. <filter> <filter-name>Login</filter-name ...
- tcolorbox 宏包简明教程
嗯,我消失好几天了.那么,我都在做什么呢?没错,就是写这篇文章了.这篇文章写起来着实有些费神了.于是,如果你觉得这篇文章对你有帮助,不妨扫描文末的二维码,适量赞助一下哦~! tcolorbox 宏包是 ...
- 《深入理解java虚拟机》读书笔记三——第四章
第四章 虚拟机性能监控与故障处理工具 1.JDK命令行工具 jps命令: 作用:列出正在运行的虚拟机进程. 格式:jps [option] [hostid] 选项:-q 只输出LVMID(Local ...