题目链接:https://www.luogu.org/problemnew/show/P1962

题意:求fib数列的第n项,很大。mod 1e9+7.

题解:BM直接推。

代码:

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int, int> PII;
const ll mod = ;
ll powmod(ll a, ll b)
{
ll res = ; a %= mod;
assert(b >= );
for (; b; b >>= )
{
if (b & )
res = res * a%mod;
a = a * a%mod;
}
return res;
}
// head int _, n;
namespace linear_seq
{
const int N = ;
ll res[N], base[N], _c[N], _md[N];
vector<int> Md;
void mul(ll *a, ll *b, int k)
{
rep(i, , k + k) _c[i] = ;
rep(i, , k)
if (a[i])
rep(j, , k)
_c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (int i = k + k - ; i >= k; i--)
if (_c[i])
rep(j, , SZ(Md))
_c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
rep(i, , k) a[i] = _c[i];
}
int solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans = , pnt = ;
int k = SZ(a);
assert(SZ(a) == SZ(b));
rep(i, , k)
_md[k - - i] = -a[i]; _md[k] = ;
Md.clear();
rep(i, , k)
if (_md[i] != ) Md.push_back(i);
rep(i, , k)
res[i] = base[i] = ;
res[] = ;
while ((1ll << pnt) <= n) pnt++;
for (int p = pnt; p >= ; p--)
{
mul(res, res, k);
if ((n >> p) & )
{
for (int i = k - ; i >= ; i--) res[i + ] = res[i]; res[] = ;
rep(j, , SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
rep(i, , k) ans = (ans + res[i] * b[i]) % mod;
if (ans < ) ans += mod;
return ans;
}
VI BM(VI s)
{
VI C(, ), B(, );
int L = , m = , b = ;
rep(n, , SZ(s))
{
ll d = ;
rep(i, , L + ) d = (d + (ll)C[i] * s[n - i]) % mod;
if (d == ) ++m;
else if ( * L <= n)
{
VI T = C;
ll c = mod - d * powmod(b, mod - ) % mod;
while (SZ(C) < SZ(B) + m) C.pb();
rep(i, , SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + - L; B = T; b = d; m = ;
}
else
{
ll c = mod - d * powmod(b, mod - ) % mod;
while (SZ(C) < SZ(B) + m) C.pb();
rep(i, , SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
int gao(VI a, ll n)
{
VI c = BM(a);
c.erase(c.begin());
rep(i, , SZ(c)) c[i] = (mod - c[i]) % mod;
return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
}
}; int main() {
long long n;
vector<int>v;
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
while(~scanf("%lld",&n)){
printf("%lld\n", linear_seq::gao(v, n - ));
//VI{1,2,4,7,13,24}
//printf("%lld\n", linear_seq::gao(v, n - 1));
//printf("%d\n",linear_seq::gao(VI{x1,x2,x3,x4},n-1));
}
}

update:

矩阵快速幂

\begin{pmatrix} 1 & 1\\ 1 & 0 \end{pmatrix}  *

\begin{pmatrix} f(n-1)\\ f(n-2) \end{pmatrix} =

\begin{pmatrix} f(n)\\ f(n-1) \end{pmatrix}

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define ll long long
const int maxn = ;
const ll mod = 1e9+; ll n,p; //矩阵结构体
struct Matrix{
ll a[maxn][maxn];
void init(){ //初始化为单位矩阵
memset(a, , sizeof(a));
for(int i = ; i <= maxn;i++){
a[i][i] = ;
}
}
}; //矩阵乘法
Matrix mul(Matrix a, Matrix b){
Matrix ans;
for(int i = ;i <= ;++i){
for(int j = ;j <= ;++j){
ans.a[i][j] = ;
for(int k = ;k <= ;++k){
ans.a[i][j] = ans.a[i][j] % mod + a.a[i][k] * b.a[k][j] % mod;
}
}
}
return ans;
} //矩阵快速幂
Matrix qpow(Matrix a,ll b){
Matrix ans;
ans.init();
while(b){
if(b & )
ans = mul(ans,a);
a = mul(a,a);
b >>= ;
}
return ans;
} void print(Matrix a){
for(int i = ; i <= n;++i){
for(int j = ;j <= n;++j){
cout << a.a[i][j]%mod<< " ";
}
cout << endl;
}
} int main(){
Matrix base;
Matrix ans;
ans.a[][] = ;
ans.a[][] = ;
base.a[][] = ;
base.a[][] = ;
base.a[][] = ;
base.a[][] = ;
cin>>n;
ans = mul(ans,qpow(base,n-));
cout<<ans.a[][]<<endl;
return ;
}

【洛谷】P1962的更多相关文章

  1. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  2. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  3. 洛谷 P1962 斐波那契数列

    题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...

  4. 【洛谷P1962】斐波那契数列

    斐波那契数列 题目链接:https://www.luogu.org/problemnew/show/P1962 矩阵A 1,1 1,0 用A^k即可求出feb(k). 矩阵快速幂 #include&l ...

  5. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  6. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  7. AC日记——斐波那契数列 洛谷 P1962

    斐波那契数列 思路: 矩阵快速幂: 来,上代码: #include <cstdio> #include <cstring> #include <iostream> ...

  8. 洛谷P1962 斐波那契数列

    传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...

  9. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  10. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

随机推荐

  1. 学习MFC创建界面

    原始学习文章地址: http://blog.csdn.net/chenyusiyuan/article/details/4744097 一.创建MFC 首先创建一个MFC对话框应用程序(Dialog- ...

  2. Django+telnetlib实现webtelnet

    说明 基于 python3.7 + django 2.2.3 实现的 django-webtelnet.有兴趣的同学可以在此基础上稍作修改集成到自己的堡垒机中. 项目地址:https://github ...

  3. IIS身份验证和文件操作权限(三、ASP.NET模拟)

    一.配置ASP.NET模拟 注意:在配置[ASP.NET模拟]是还要配置[匿名身份验证]不知道为什么,有知道可以留言,互相学习 二.浏览站点 -- 操作文件 ①无操作权限 点击写入 ②有操作权限(特定 ...

  4. gthub获得star指南

    https://mp.weixin.qq.com/s/EmyK1Fm5MDWQcrUxP8Tcgg

  5. 1、siege安装

    1.下载最新版本的siege wget http://download.joedog.org/siege/siege-latest.tar.gz 2.解压并进入siege路径 tar -zxvf si ...

  6. Naive RNN vs LSTM vs GRU、attention基础

    原文地址:https://www.jianshu.com/p/b8653f8b5b2b 一.Recurrent Neural Network 二.Naive RNN Naive RNN更新参数时易出现 ...

  7. 并发编程(六)——进程/线程池、协程、gevent第三方库

    进程/线程池.协程.gevent第三方库 一.进程/线程池 1.进程池 (1)什么是进程池 如果需要创建的子进程数量不大,可以直接利用multiprocess中的Process来创建.但是当需要创建上 ...

  8. 屏幕操作录制成gif图的技巧

    我呢,在记录一些做过得实例的时候,总需要上一两张效果图,截静态图太浪费时间了,于是就找了一些录制git图的软件 一.Gif动画录制工具 这是我在360软件中心下载的,用了一下,不好用,录制出来的图是黑 ...

  9. USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆

    题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...

  10. 最基础知识 sql之left join、right join、inner join的区别

    sql之left join.right join.inner join的区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括 ...