题目大意:


给一个\(n*n\)的矩阵,对于所有排列p,记录\(a[i][p[i]]\)的k进制下不进位加法的结果,问所有被记录过的数。

\(n<=50,p=2、3,0<=a[i][j]<p^7\)

题解:


又是排列,不妨考虑行列式:

\(|A|=\sum_{p是排列}(-1)^{p的逆序对个数} \prod A[i][p[i]]\)

这里的A是一个集合幂级数,×定义为k进制不进位加法卷积。

假设我们直接做高斯消元求行列式,发现由于\((-1)^?\)次方,可能导致本来≠0而加起来为0,所以需要随机一个系数作为集合幂级数的系数。

带着这么个集合幂级数去高斯消元显然不太行,假设p=2,不妨先FWT,这样卷积就变成了点积,并且点积不同位之间没有影响,所以可以先枚举是哪一位,再消元。

这样的话复杂度是\(O(n^3*p^7)\)。

那么问题就在于如何做p进制的FWT。

发现FWT的本质就是构造一个可逆的转移矩阵,这里转移矩阵需要满足做出来点积后是k进制不进位加法,也就是k的循环溢出,那么不妨直接用FFT的单位复数根去完成这个东西。

即转移矩阵\(b[i][j]=w_k^{ij}\),逆FWT就是\(w_k^{-ij}/k\)。

\(w_k\)可以取FFT的\((cos(2*\pi/k),sin(2*\pi/k)*i)\),也可以NTT那样取一个\(p|(mo-1)\)的质数mo,然后用\(原根^{(mo-1)/k}\)

#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
#define db long double
using namespace std; int rand(int x, int y) {
return ((ll) RAND_MAX * rand() + rand()) % (y - x + 1) + x;
} const int mo = 1e9 + 9; ll ksm(ll x, ll y) {
ll s = 1;
for(; y; y /= 2, x = x * x % mo)
if(y & 1) s = s * x % mo;
return s;
} int num, n, k, a[51][51];
ll w[3];
void fwt(ll *a, int n, int f) {
ll v = ksm(ksm(13, (mo - 1) / k), f == 1 ? 1 : mo - 2);
w[0] = 1; ff(i, 1, k) w[i] = w[i - 1] * v % mo;
for(int h = 1; h < n; h *= k) {
for(int j = 0; j < n; j += k * h) {
ff(i, 0, h) {
ll c[3]; ff(u, 0, k) c[u] = 0;
ff(u, 0, k) ff(v, 0, k) c[v] += a[i + j + h * u] * w[u * v % k] % mo;
ff(u, 0, k) a[i + j + h * u] = c[u] % mo;
}
}
}
if(f == -1) {
v = ksm(n, mo - 2);
ff(i, 0, n) a[i] = a[i] * v % mo;
}
} const int N = 2187 + 5; int m;
ll b[51][51][N], c[N], d[51][51]; ll solve(ll a[][51]) {
ll s = 1;
fo(i, 1, n) {
int u = i;
fo(j, i, n) if(a[j][i]) { u = j; break;}
if(i != u) {
fo(j, 1, n) swap(a[i][j], a[u][j]);
s *= -1;
}
ll ni = ksm(a[i][i], mo - 2);
fo(j, i + 1, n) if(a[j][i]) {
ll v = -a[j][i] * ni % mo;
fo(k, 1, n) a[j][k] = (a[j][k] + a[i][k] * v) % mo;
}
}
fo(i, 1, n) s = s * a[i][i] % mo;
return s;
} int main() {
srand(time (0) + clock());
freopen("astrology.in", "r", stdin);
freopen("astrology.out", "w", stdout);
scanf("%d %d %d", &num, &n, &k);
m = 1; fo(i, 1, 7) m = m * k;
fo(i, 1, n) fo(j, 1, n) scanf("%d", &a[i][j]);
fo(i, 1, n) fo(j, 1, n) {
b[i][j][a[i][j]] = rand(1, mo - 1);
fwt(b[i][j], m, 1);
}
solve(d);
ff(u, 0, m) {
fo(i, 1, n) fo(j, 1, n) d[i][j] = b[i][j][u];
c[u] = solve(d);
}
fwt(c, m, -1);
ff(i, 0, m) if(c[i]) pp("%d ", i);
}

2019.7.3模拟 七星连珠(行列式+随机+k进制FWT)的更多相关文章

  1. 2018.10.04 NOIP模拟 K进制(模拟)

    传送门 签到题,直接瞎模拟就行了. 代码

  2. 颜色转换、随机、16进制转换、HSV

    颜色转换.随机.16进制转换.HSV: /** * * *-----------------------------------------* * | *** 颜色转换.随机.16进制转换.HSV * ...

  3. 数据结构之【栈】+十进制转d进制(堆栈数组模拟)

    其实这篇文章开出来主要是水文章%% %% 栈--后进先出的婊 特点:只能在某一端插入和删除的特殊的线性表 操作:进栈--PUSH->向栈顶插入元素 出栈--POP-->将栈顶元素删除 实现 ...

  4. JS一行代码,生成一个16进制随机颜色,简单粗暴。

    var color = '#'+ Math.random().toString(16).substr(-6); document.body.style.backgroundColor = color; ...

  5. jmeter测试TCP服务器/模拟发送TCP请求 设置16进制发送(转)

    转载留存:http://blog.sina.com.cn/s/blog_46d0362d0102v8ii.html 性能测试需要模拟多种场景,经常受制于资源限制,没办法建立贴近实际部署环境的场景.因而 ...

  6. hdu4886 TIANKENG’s restaurant(Ⅱ) (trie树或者模拟进制)

    TIANKENG’s restaurant(Ⅱ) Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 130107/65536 K (Ja ...

  7. HDU4814——数学,模拟进制转换

    本题围绕:数学公式模拟进制转换 HDU4814 Golden Radio Base 题目描述 将一个十进制的非负整数转换成E(黄金分割数)进制的数 输入 不大于10^9的非负整数,处理到文件尾 输出 ...

  8. C++笔记(7)——一些模拟题:简单模拟、查找元素、图形输出、日期处理、进制转换、字符串处理

    以下内容基本来自<算法笔记>,作者为胡凡,建议直接买书看,我这里只是摘抄部分当笔记,不完整的. 简单模拟 就是一类"题目怎么说你就怎么做"的题目.这类题目不涉及算法,只 ...

  9. 原生JS代码实现随机产生一个16进制的颜色值

    封装一个函数 function getColor() { var str = "#"; //一个十六进制的值的数组 var arr = ["0", " ...

随机推荐

  1. codeforces1139E Maximize Mex 二分图匹配

    题目传送门 题意:给出n个人,m个社团,每个人都有一个标号,一个能力值,并且属于一个社团,第i天的凌晨,第$k_i$个人会离开.每天每个社团最多派一个人出来参加活动.派出的人的能力值集合为S,求每天$ ...

  2. Android jniLibs下目录详解(.so文件)

    http://www.jianshu.com/p/b758e36ae9b5 最近又研究了一下,参考了一下:三星/联发科等处理器规格表 更新时间:2017年5月手机CPU架构体系分类及各大厂商 PS:我 ...

  3. Fiddler,对数据进行抓包,拦截,修改等操作

    转载....... 一.fiddler设置fiddler默认是只能抓取http网络格式的,所以我们要先设置下使fiddler可以获取到https网络格式 首先tools→options→https进去 ...

  4. 08-01-json-loggin-模块

    复习 ''' ATM: -- start.py BASE_DIR = os.path.dirname(__file__) sys.path.append(BASE_DIR) -- conf -- li ...

  5. SQL 与,或,非

    SQL AND, OR and NOT(与,或不是运算符) AND&OR运算符用于根据一个以上的条件过滤记录. SQL AND & OR 运算符 WHERE子句可以与AND,OR和NO ...

  6. 使用Objective-C的+(void)initialize初始化static变量

    在<Objective C类方法load和initialize的区别>一文中,我介绍了Objective-C对待+(void)initialize和+(void)load两个方法在编译和执 ...

  7. Java习题练习

    Java习题练习 1. 依赖注入和控制反转是同一概念: 依赖注入和控制反转是对同一件事情的不同描述,从某个方面讲,就是它们描述的角度不同.依赖注入是从应用程序的角度在描述,可以把依赖注入描述完整点:应 ...

  8. python 拆分字符串(3.0)

    拆分字符串 1. def my_split(s, ds): l = [s] for d in ds: res = [] list(map(lambda x: res.extend(x.split(d) ...

  9. 在Windows的控制台和Linux的终端中显示加载进度

    Windows中 #include <stdio.h> #include <windows.h> int main() { ;//任务完成总量 int i; ; i < ...

  10. 截取url中的某个字符串后面的值

    获取到当前网址 var url = window.location.href; http://localhost:8080/exam_questions?type=3 //获取url中的参数 func ...