codeforce 427 C. Checkposts(tarjan 强连通分量)
题目链接:http://codeforces.com/contest/427/problem/C
题目大意是有n个junctions,这些junctions之间有m条道路,两两相连,现在在junction上建立Checkposts,而且建立checkposts需要花费cost,如果某个点 i 建立了checkpost那么从这个点 i 开始绕一个环最终可以回到点 i ,那么途中经过的点都可以被监视到,问最少花费多少钱去建立checkposts才可以监视所有的junctions,建立checkposts的方案有多少种?
题解思路:刨析题意就是让你求有多少个强连通分量,用tarjan依次跑出每个强连通分量包含的点集,找出该集合中建立checkposts的最小花费,再求一下可以用最小花费建checkpost的junction的个数,最终的方案书就是每个强连通分量的 最小花费建checkpost的junction的个数连乘,最小花费就简单了,求一个强连通分量就加一下最小花费即可。
AC代码:
#include<iostream>
#include<stack>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
struct node{
vector<int> vex;
int cost;
};
node g[3000008];
int dfn[3000008];
int low[3000008];
int visit[3000008];
stack<int> stk;
vector<int> sum;
long long int Fcost = 0;
int tot ;
long long int mod = 1e9+7;
void tarjan(int x){
dfn[x] = low[x] = ++tot;
visit[x] = 1;
stk.push(x);
for(int i = 0;i<g[x].vex.size();i++ ){
if(!dfn[g[x].vex[i]]){
tarjan(g[x].vex[i]);
low[x] = min(low[x],low[g[x].vex[i]]);
}
else if(visit[g[x].vex[i]]){
low[x] = min(low[x],dfn[g[x].vex[i]]);
}
}
if(low[x] == dfn[x]){//找到一个强连通分量
int cnt = 1;
int Tcost = 0x3f3f3f3f;
while(x!=stk.top()){
visit[stk.top()] = 0;
if(g[stk.top()].cost < Tcost){
cnt = 1;//从这个强连通分量中找最小花费
Tcost = min(Tcost,g[stk.top()].cost);
}
else if(g[stk.top()].cost == Tcost){
cnt++;//记录最小花费点的个数
}
stk.pop();
}
visit[stk.top()] = 0;
if(g[stk.top()].cost < Tcost)
{
cnt = 1;
Tcost = min(Tcost,g[stk.top()].cost);
}
else if(g[stk.top()].cost == Tcost)
{
cnt++;
}
stk.pop();//这里是弹出栈内最后一个强连通分量的点
Fcost = (Fcost + Tcost);//Fcost是总花费
sum.push_back(cnt); //记录每个强连通分量的可以用最小花费点建立checkpost的个数
}
}
int main(){
int n;
cin>>n;
for(int i = 1;i<=n;i++){
int costI;
cin>>costI;
g[i].cost = costI;
}
int m;
cin>>m;
for(int i = 1;i<=m;i++){
int u,v;
cin>>u>>v;
g[u].vex.push_back(v);
}
for(int i = 1;i<=n;i++){//tarjan的板子,直接套一下
if(!dfn[i]){
tarjan(i);
}
}
long long int res = 1;
for(int i = 0;i<sum.size();i++){
res = (res*sum[i])%mod;
}
cout<<Fcost<<" "<<res;
return 0;
}
codeforce 427 C. Checkposts(tarjan 强连通分量)的更多相关文章
- Codeforces Round #244 (Div. 2) C. Checkposts (tarjan 强连通分量)
题目:http://codeforces.com/problemset/problem/427/C 题意:给你n座城市,m条有向道路,然后有一个机制,你在某一个城市设置检查点,那么被设置的检查点受保护 ...
- Tarjan 强连通分量 及 双联通分量(求割点,割边)
Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1) 有向图的强联通分量 (2) 无向图的双联通分量(求割点,桥) ...
- tarjan 强连通分量
一.强连通分量定义 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly c ...
- tarjan强连通分量模板(pascal)
友好城市 [问题描述]小 w 生活在美丽的 Z 国. Z 国是一个有 n 个城市的大国, 城市之间有 m 条单向公路(连接城市 i. j 的公路只能从 i 连到 j). 城市 i. j 是友好城市当且 ...
- 1051: [HAOI2006]受欢迎的牛 (tarjan强连通分量+缩点)
题目大意:CodeVs2822的简单版本 传送门 $Tarjan$强连通分量+缩点,若连通块的个数等于一则输出n:若缩点后图中出度为0的点个数为1,输出对应连通块内的点数:否则输出0: 代码中注释部分 ...
- [poj 2553]The Bottom of a Graph[Tarjan强连通分量]
题意: 求出度为0的强连通分量. 思路: 缩点 具体有两种实现: 1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1. #include <cstdio> ...
- [poj 1904]King's Quest[Tarjan强连通分量]
题意:(当时没看懂...) N个王子和N个女孩, 每个王子喜欢若干女孩. 给出每个王子喜欢的女孩编号, 再给出一种王子和女孩的完美匹配. 求每个王子分别可以和那些女孩结婚可以满足最终每个王子都能找到一 ...
- 算法模板——Tarjan强连通分量
功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量 原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点 这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有 ...
- Equivalent Sets HDU - 3836 2011多校I tarjan强连通分量
题意: 给一些集合 要求证明所有集合是相同的 证明方法是,如果$A∈B$,$B∈A$那么$A=B$成立 每一次证明可以得出一个$X∈Y$ 现在已经证明一些$A∈B$成立 求,最少再证明多少次,就可以完 ...
随机推荐
- 小白的java学习之路 "类的无参方法"
Java注释: //:单行注释 /**/:多行注释 /** */:JavaDoc注释语法: 访问修饰符 返回值类型 方法名(){ 方法体 } 举例: public void run(){ System ...
- [转]从实例谈OOP、工厂模式和重构
有了翅膀才能飞,欠缺灵活的代码就象冻坏了翅膀的鸟儿.不能飞翔,就少了几许灵动的气韵.我们需要给代码带去温暖的阳光,让僵冷的翅膀重新飞起来.结合实例,通过应用OOP.设计模式和重构,你会看到代码是怎样一 ...
- 【E20200102-1】centos 7 下vsftp的安装和配置
一.准备工作 1.1.服务器准备 操作系统:centos 7.x 关闭防火墙(firewall/iptables)和SELinux 参见笔记<[E20200101-1]Centos 7.x 关闭 ...
- web 项目添加 x86 的dll 引用,模块 DLL c:\WINDOWS\system32\inetsrv\aspnetcore.dll 未能加载。
最近的项目要添加一个 x86 编译的dll, 首先添加引用,编译,报错: 首先判断是 项目中不能添加 x86 的引用,所以把所有的项目都按照 x86 的方式编译一遍,同时对应IIS 的应用池,也修改为 ...
- 备份Sql Server中的某些表
第一步:右键需要备份表的数据库 第二步:选择=>选择特定数据库对象,在下方选择你需要备份的数据表. 第三步,点击高级,在要编写脚本的数据的类型中选择架构和数据(看个人需要),根据需要可更换生成的 ...
- Selenium3+python自动化010-UnitTest框架简介和单元测试框架使用
一.UnitTest介绍 unittest单元测试框架不仅可以适用于单元测试,还可以适用WEB自动化测试用例的开发与执行,该测试框架可组织执行测试用例,并且提供了丰富的断言方法,判断测试用例是否通过, ...
- springboot中使用kaptcha验证码
maven依赖 <dependency> <groupId>com.github.penggle</groupId> <artifactId>kaptc ...
- 二分-G - 4 Values whose Sum is 0
G - 4 Values whose Sum is 0 The SUM problem can be formulated as follows: given four lists A, B, C, ...
- vue学习指南:第十三篇(详细) - Vue的 路由 第三篇 ( 路由的缓存 )
路由的缓存 路由缓存是 Vue组件优化的一个重要方法 为什么实现路由缓存? 为了 组件间 相互切换不会重复加载数据,影响用户体验,我们通常需要将组件的数组实现缓存,当我们点过来,在点的时候会再次发送 ...
- 【Unity|C#】基础篇(11)——内置的泛型委托(Action/Func/Predicate)
[Action] 无返回值 的泛型委托,可以有0~16个参数(函数重载) public delegate void Action(); // 无参数 public delegate void Acti ...