CodeForces 258D Little Elephant and Broken Sorting(期望)
CF258D Little Elephant and Broken Sorting
题意
题意翻译
有一个\(1\sim n\)的排列,会进行\(m\)次操作,操作为交换\(a,b\)。每次操作都有\(50\%\)的概率进行。
求进行\(m\)次操作以后的期望逆序对个数。
\(n,m\le 1000\)
输入输出格式
输入格式:
The first line contains two integers \(n\) and \(m\) \((1\leq n,m\leq 1000,n>1)\) — the permutation size and the number of moves. The second line contains \(n\) distinct integers, not exceeding \(n\) — the initial permutation. Next \(m\) lines each contain two integers: the \(i\)-th line contains integers \(a_{i}\) and \(b_{i}\) \((1\leq a_{i},b_{i}\leq n,a_{i}\neq b_{i})\) — the positions of elements that were changed during the \(i\)-th move.
输出格式:
In the only line print a single real number — the answer to the problem. The answer will be considered correct if its relative or absolute error does not exceed \(10^{-6}\).
输入输出样例
输入样例#1:
2 1
1 2
1 2
输出样例#1:
0.500000000
输入样例#2:
4 3
1 3 2 4
1 2
2 3
1 4
输出样例#2:
3.000000000
思路
这道题真的水。 --Mercury
完全想不到的状态设计,感谢\(Mercury\)巨佬的指点。
定义\(f(i,j)\)为位置\(i\)上的数比位置\(j\)上的数大的概率。假设每次交换都是\(100\%\)成功的,不妨设这次交换的数的下标为\(a,b\),那么对于任意的\(f(i,a),f(i,b)\)就要被交换,\(f(a,i),f(b,i)\)也要被交换。可是当前交换的概率是\(50\%\)的,所以\(f(i,a),f(i,b)\)之间的差值要被分别减少\(50\%\),也就相当于\(f(i,a)=f(i,b)=(f(i,a)+f(i,b))\div 2\)。同理,\(f(a,i)=f(b,i)=(f(a,i)+f(b,i))\div 2\)。最后的逆序对期望,也就是\(\Sigma [i<j]f(i,j)\times 1\),也就是\(\Sigma [i<j]f(i,j)\)。
还要再胡扯两句。 其实只要想出了\(f(i,j)\)这个东西,什么都简单了,可是又会有几个人能够想到这种方法呢?完全没有类似的情况作为参考,掌握了这道题却又能给类似的题提供经验(毕竟也没有类似的题)。下一次见到了这种思维量大的题,还是不太能想得出。思维的活跃在\(OI\)中还是有很大的作用的啊!
AC代码
#include<bits/stdc++.h>
#define RG register
using namespace std;
int n,m,a[1005];
double ans,f[1005][1005];
int read()
{
RG int re=0;RG char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
int main()
{
n=read(),m=read();
for(RG int i=1;i<=n;i++) a[i]=read();
for(RG int i=1;i<=n;i++)
for(RG int j=i+1;j<=n;j++)
if(a[i]>a[j]) f[i][j]=1.0;
else f[j][i]=1.0;
while(m--)
{
RG int x=read(),y=read();
if(x==y) continue;
for(RG int i=1;i<=n;i++)
{
if(i==x||i==y) continue;
f[i][x]=f[i][y]=(f[i][x]+f[i][y])/2;
f[x][i]=f[y][i]=(f[x][i]+f[y][i])/2;
}
f[x][y]=f[y][x]=0.5;
}
for(RG int i=1;i<=n;i++)
for(RG int j=i+1;j<=n;j++)
ans+=f[i][j];
printf("%.8f",ans);
return 0;
}
CodeForces 258D Little Elephant and Broken Sorting(期望)的更多相关文章
- Codeforces 258D Little Elephant and Broken Sorting (看题解) 概率dp
Little Elephant and Broken Sorting 怎么感觉这个状态好难想到啊.. dp[ i ][ j ]表示第 i 个数字比第 j 个数字大的概率.转移好像比较显然. #incl ...
- CodeForces - 258D Little Elephant and Broken Sorting
Discription The Little Elephant loves permutations of integers from 1 to n very much. But most of al ...
- CF 258 D. Little Elephant and Broken Sorting
D. Little Elephant and Broken Sorting 链接 题意: 长度为n的序列,m次操作,每次交换两个位置,每次操作的概率为$\frac{1}{2}$,求m此操作后逆序对的期 ...
- CodeForces - 258D:Little Elephant and Broken Sorting(概率DP)
题意:长度为n的排列,m次交换xi, yi,每个交换x,y有50%的概率不发生,问逆序数的期望 .n, m <= 1000 思路:我们只用维护大小关系,dp[i][j]表示位置i的数比位置j的 ...
- CF258D Little Elephant and Broken Sorting/AGC030D Inversion Sum 期望、DP
传送门--Codeforces 传送门--Atcoder 考虑逆序对的产生条件,是存在两个数\(i,j\)满足\(i < j,a_i > a_j\) 故设\(dp_{i,j}\)表示\(a ...
- CF258D Little Elephant and Broken Sorting (带技巧的DP)
题面 \(solution:\) 这道题主要难在考场上能否想到这个思路(即如何设置状态)(像我这样的蒟蒻就想不到呀QAQ)不过这一题确实很神奇! \(f[i][j]:\)表示第 \(a_i\) 个数比 ...
- codeforces 258D
D. Little Elephant and Broken Sorting time limit per test 2 seconds memory limit per test 256 megaby ...
- codeforces 258D DP
D. Little Elephant and Broken Sorting time limit per test 2 seconds memory limit per test 256 megaby ...
- CodeForces - 204C Little Elephant and Furik and Rubik
CodeForces - 204C Little Elephant and Furik and Rubik 个人感觉是很好的一道题 这道题乍一看我们无从下手,那我们就先想想怎么打暴力 暴力还不简单?枚 ...
随机推荐
- vue webpack打包后.css文件里面的背景图片路径错误解决方法
资源相对引用路径 问题描述 一般情况下,通过webpack+vuecli默认打包的css.js等资源,路径都是绝对的. 但当部署到带有文件夹的项目中,这种绝对路径就会出现问题,因为把配置的static ...
- [DataContract]引用
项目->右键->添加引用->找到System.Runtime.Serialization 添加之
- CentOS yum 安装 g++ 4.7.2 & c++11
From this answer to "Install gcc 4.7 on CentOS [6.x]", the easiest way to get g++ 4.7, and ...
- 转:这里有些sscanf()的一些使用说明,都是从论坛,Blog里整理出来的。供大家使用。
http://www.cnblogs.com/gmh915/archive/2009/09/30/1576995.html 这里有些sscanf()的一些使用说明,都是从论坛,Blog里整理出来的.供 ...
- LeetCode刷题笔记-回溯法-括号生成
题目描述: 给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合. 例如,给出 n = 3,生成结果为: [ "((()))", "( ...
- CentOS7 相关配置
nginx 1.在线安装nginx yum install nginx 2.启动nginx服务 systemctl start nginx 3.防火墙设置 打开http防火墙:firewall-cmd ...
- DLL和OCX注册
在注册DLL或者OCX的方法应该使用regsvr32.exe,使用得多了一定会觉得在cmd运行中写一长串东西很烦人吧!这里向大家介绍一种麻烦一次方便一生的方法.这个方法只要右击你想注册或者反注册的DL ...
- SHELL脚本中执行SQL语句操作MYSQL的5种方法
对于自动化运维,诸如备份恢复之类的,DBA经常需要将SQL语句封装到shell脚本.本文描述了在Linux环境下mysql数据库中,shell脚本下调用sql语句的几种方法,供大家参考.对于脚本输出的 ...
- 【JZOJ6350】考试(test)
description analysis 对于\(n=0\)的点,直接模拟就好了 状压\(DP\),设\(f[i][j][S]\)表示到第\(i\)题.连续\(GG\)了\(j\)题.喝的饮料集合为\ ...
- 给大家介绍一下linux系统高级命令
输出重定向(mip.0834jl.com) ;覆盖文件内容 回声' 123 ' 测试;覆盖原始内容 回声' 123 ' 测试;原始存在(共存) echo 'ken2 '(www.jl0834.com) ...