SDUT-3364_欧拉回路
数据结构实验之图论八:欧拉回路
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。
能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓扑学。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡七桥问题,并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。
你的任务是:对于给定的一组无向图数据,判断其是否成其为欧拉图?
Input
连续T组数据输入,每组数据第一行给出两个正整数,分别表示结点数目N(1 < N <= 1000)和边数M;随后M行对应M条边,每行给出两个正整数,分别表示该边连通的两个结点的编号,结点从1~N编号。
Output
若为欧拉图输出1,否则输出0。
Sample Input
1
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6
Sample Output
1
Hint
如果无向图连通并且所有结点的度都是偶数,则存在欧拉回路,否则不存在。
题解:已经给了欧拉回路的判定条件,判定一下图是否连通,然后就可以判断一下是不是欧拉回路就可以了。
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int n;/*n节点数量*/
int f[1050];/*记录点是否被遍历过*/
int INF = 1e9+7;/*相当于无穷大*/
int s[1050][1050];
int num[1050];/*记录节点的度*/
void DFS(int x)
{
f[x] = 1;
int i;
for(i=1;i<=n;i++)
{
if(!f[i]&&s[x][i])
DFS(i);
}
}
int main()
{
int t;
int m,i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
s[i][j] = 0;
for(i=1;i<=n;i++)
num[i] = f[i] = 0;
for(i=0;i<m;i++)/*输入边的时候顺便把端点的度记录*/
{
int a,b;
scanf("%d%d",&a,&b);
s[a][b] = s[b][a] = 1;
num[a] ++;
num[b] ++;
}
for(i=1;i<=n;i++)/*判断度是否都是偶数*/
{
if(num[i]%2)
break;
}
if(i!=n+1)/*说明有点的度不是偶数,证明不是欧拉回路*/
{
printf("0\n");
continue;
}
int ff = 0;
for(i=1;i<=n;i++)/*判断图是否连通*/
{
if(!f[i])/*未标记说明是一颗新的树(图),对他进行DFS*/
{
ff ++;/*记录树(图)的数量*/
DFS(i);
}
}
if(ff>1)/*树(图)的数量不唯一,说明图不连通*/
{
printf("0\n");
continue;
}
printf("1\n");
}
return 0;
}
SDUT-3364_欧拉回路的更多相关文章
- SDUT OJ 数据结构实验之图论八:欧拉回路
数据结构实验之图论八:欧拉回路 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descrip ...
- SDUT 3364 数据结构实验之图论八:欧拉回路
数据结构实验之图论八:欧拉回路 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 在哥尼斯堡的 ...
- 数据结构实验之图论八:欧拉回路(SDUT 3364)
Problem Description 在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来. 能否走过这样的七座桥,并且每桥只走一次?瑞士数学家欧拉最终解决了这个问题并由此创立了拓 ...
- ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...
- [poj2337]求字典序最小欧拉回路
注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...
- ACM: FZU 2112 Tickets - 欧拉回路 - 并查集
FZU 2112 Tickets Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u P ...
- UVA 10054 the necklace 欧拉回路
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- codeforces 723E (欧拉回路)
Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...
- UVa 12118 检查员的难题(dfs+欧拉回路)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- MySQL时间格式转换
1.时间转换成特定字符串 例:select DATE_FORMAT(now(),'%Y-%m-%d %H:%i::%s'); --> '2019-10-16 10:59::18' 2.一种字符串 ...
- bootstrap-table的简要使用
bttable功能强大!同时支持申明方式和编程方式来使用!是wenzhixin主导开发一款开源的表格控件! 文档比较详尽,但要求初学者已经比较熟悉js,jquey等基本内容,否则可能许多代码无法阅读! ...
- 使用ssh时报错:Service对象空指针异常
有可能是spring容器不能自动生成service对象,导致空指针异常,常见的情况可能是在service前面加@Service注释
- 使用alibaba的json工具将String类型转为JSONArray类型
转化流程:先将输入流转为String类型,再使用alibaba的json转换工具,将字符串转化为json数组 SensorDevices sensorDevices = new SensorDevic ...
- Sql 竖表转横表
) set @sql='select t3.BID,t5.UnitName,Sort,UnitTypeSort' select @sql=@sql+' , max(case t4.id when '' ...
- TZ_14_Feign的客户端和Feign的负载均衡
1.作用:Feign可以把Rest的请求进行隐藏,伪装成类似SpringMVC的Controller一样.你不用再自己拼接url,拼接参数等等操作,一切都交给Feign去做. 2.导入起步坐标 < ...
- pc端样式重置以及常用样式规范class
//reset html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a ...
- Mysql 遇到的一些坑
1.命令行按回车,或是输入\c,quit 都无法结束编辑状态,如图: 出现了"> ,然后不管输入什么都无法退出,这时输入>前的字符作为结束字符,再输入\c,既需要输入 " ...
- go语言:获取字符串长度
go语言字符串底层由字节数组实现,使用UTF-8编码,初始化以后不能被修改 获取字符串长度 一.当字符串中所有字符都是单字节字符时,使用 len 函数获取字符串的长度 package main imp ...
- 2019.7.27 NOIP模拟测试9 反思总结
先来整理题目 T1题目大意:给出n个数字和一个质数作为模数,一个变量x初始值为1.进行m次操作,每次让x随机乘上n个数中的一个,问m次操作以后x的期望值. 答案一定可以用分数表示,输出分子乘分母逆元的 ...