Description

给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。

Input

输入第一行包含一个整数T,表示数据组数。

第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。

1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。

Output

输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果。

Sample Input

2

1 4 5

2 4 5

Sample Output

2

5

//【样例说明】满足条件的2个序列为[4]和[5]。


思路

推一下式子发现答案是\(\sum_{i=1}^{n}C_{r-l+i}^i=C_{r-l+n+1}^n-1\)

#include<bits/stdc++.h>

using namespace std;

const int Mod = 1e6 + 3;

int f[Mod + 10];
int inv[Mod + 10], fac[Mod + 10]; int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
} int sub(int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
} int mul(int a, int b) {
return 1ll * a * b % Mod;
} int fast_pow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = mul(res, a);
b >>= 1;
a = mul(a, a);
}
return res;
} void init() {
fac[0] = inv[0] = 1;
for (int i = 1; i < Mod; i++) fac[i] = mul(fac[i - 1], i);
inv[Mod - 1] = fast_pow(fac[Mod - 1], Mod - 2);
for (int i = Mod - 2; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1);
} int C(int a, int b) {
return mul(fac[a], mul(inv[b], inv[a - b]));
} int lucas(int a, int b) {
if (a < b) return 0;
if (a < Mod && b < Mod) return C(a, b);
return mul(C(a % Mod, b % Mod), lucas(a / Mod, b / Mod));
} int main() {
freopen("input.txt", "r", stdin);
init();
int T; scanf("%d", &T);
while (T--) {
int n, l, r;
scanf("%d %d %d", &n, &l, &r);
printf("%d\n", sub(lucas(r - l + n + 1, n), 1));
}
return 0;
}

BZOJ4403: 序列统计【lucas定理+组合数学】的更多相关文章

  1. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  2. 【BZOJ4403】序列统计 Lucas定理

    [BZOJ4403]序列统计 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第 ...

  3. BZOJ4403 序列统计—Lucas你好

    绝对是全网写的最详细的一篇题解  题目:序列统计 代码难度:简单 思维难度:提高+-省选 讲下题面:给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案 ...

  4. bzoj 4403 序列统计 卢卡斯定理

    4403:序列统计 Time Limit: 3 Sec  Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调 ...

  5. bzoj4403: 序列统计

    我们很容易发现答案是C(R-L+N+1,N)-1 然后用一下lucas定理就行了 #include <iostream> #include <cstdio> #include ...

  6. 2018.09.09 bzoj4403: 序列统计(Lucas定理)

    传送门 感觉单调不降序列什么的不好做啊. 于是我们序列中下标为i的元素的值加上i,这样就构成了一个单调递增的序列. 问题就变成了: 求出构造长度分别为1 ~ n且每个元素的值在l+1 ~ r+n之间的 ...

  7. bzoj4403 序列统计——组合数学

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403 一开始想了个 O(n) 的做法,不行啊... O(n)想法是这样的:先考虑递推,设 f ...

  8. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  9. 【BZOJ4403】序列统计(Lucas定理,组合计数)

    题意:给定三个正整数N.L和R, 统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量. 输出答案对10^6+3取模的结果. 对于100%的数据,1≤N,L,R≤10^9,1≤T≤100, ...

随机推荐

  1. 深入理解Hadoop之HDFS架构

    Hadoop分布式文件系统(HDFS)是一种分布式文件系统.它与现有的分布式文件系统有许多相似之处.但是,与其他分布式文件系统的差异是值得我们注意的: HDFS具有高度容错能力,旨在部署在低成本硬件上 ...

  2. http 相关文章

    1. 百度百科 2.http | MDN 3.协议讲解 4.经典题 5.http与https的区别 6. http服务器返回状态总结 7.网络七层协议 开放式系统互联参考模型(OSI)的7层从上到下分 ...

  3. nodejs 监听文件夹变化的模块

    使用Node.JS监听文件夹变化 fs.watch 其中Node.JS的文件系统也可侦听某个目录的改变, 如fs.watch   其中fs.watch的最大缺点就是不支持子文件夹的侦听,并且在很多情况 ...

  4. IIS中发布后出现Could not load file or assembly'System.Data.SQLite.dll' or one of its depedencies

    [问题]在我本机的开发环境c#连接sqlite3没有问题,可是release版本移植到其他的机器就提示Could not load file or assembly'System.Data.SQLit ...

  5. ASCII 对照表

    ASCII(American Standard Code for Information Interchange,美国信息互换标准代码,ASCⅡ)是基于拉丁字母的一套电脑编码系统.它主要用于显示现代英 ...

  6. Win7 默认.lnk打开方式全是别的程序 还原的办法

    Xu言: no zuo no die~ 今天,一个朋友问我,他电脑桌面上点任何东西都是提示下载... - -||| 本以为是中毒了,然后上去看了一眼..发现他自己把所有.lnk 的默认打开方式选择了搜 ...

  7. 使用Maven + Jetty时,如何不锁定js css 静态资源

    Jetty会使用内存映射文件来缓存静态文件,包括js,css文件. 在Windows下,使用内存映射文件会导致文件被锁定,所以当Jetty启动的时候无法在编辑器对js或者css文件进行编辑. 解决办法 ...

  8. 23 正则表达式和re模块

    一.正则1.字符组 [a-zA-Z0-9]字符组中的 [^a] 除了字符组的 2. 3. 4. 二.re模块 re.S 设置 .的换行 obj=re 1.ret=re.search(正则,conten ...

  9. python-day41--约束条件

    一 .介绍 约束条件与数据类型的宽度一样,都是可选参数 作用:用于保证数据的完整性和一致性主要分为: PRIMARY KEY (PK) 标识该字段为该表的主键,可以唯一的标识记录 FOREIGN KE ...

  10. 在EO中对数据的重复性进行验证

    只有在数据提交到EO中的时候才会执行set方法进行验证. 如果想要实现实时验证,可以在输入参数的地方添加事件,但是无需为此事件创建方法. 我的理解: 1.我们在页面上对内容进行修改的时候,OAF框架仅 ...