Description

N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。

Input

第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。

接下来M行,代表图中的每条边。

接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。

Output

K行每行一个整数代表该组询问的联通块个数。

Sample Input

3 5 4 0

1 3

1 2

2 1

3 2

2 2

2 3

1 5

5 5

1 2

Sample Output

2

1

3

1

HINT

对于100%的数据,1≤N、M、K≤200,000。

2016.2.26提高时限至60s


思路

考虑怎么解决联通块个数

首先我们如果从左向右扫所有的边加进联通块中

可以用LCT维护一个动态的生成树

然后一旦出现环就删除环中编号最小的一个边

然后我们考虑一下左端点如果大于当前删除的边的编号,实际上还是存在这个联通块的

所以说我们只需要统计在\([l,r]\)这个区间中左端点小于\(l\)的个数就可以知道有多少个联通块了

然后当当前节点存在自环的时候就会发现他的删除的边的编号就是自己,不然会有多余的贡献

然后主席树维护就没了


#include<bits/stdc++.h>

using namespace std;

const int N = 4e5 + 10;

int n, m, k, typ;
int u[N], v[N];
int lastans = 0; namespace Link_Cut_Tree { int ch[N][2], fa[N], minval[N], val[N], rev[N], cnt = 0; bool isroot(int t) {
return ch[fa[t]][0] != t && ch[fa[t]][1] != t;
} void pushup(int t) {
minval[t] = val[t];
if (ch[t][0]) minval[t] = min(minval[t], minval[ch[t][0]]);
if (ch[t][1]) minval[t] = min(minval[t], minval[ch[t][1]]);
} void pushnow(int t) {
swap(ch[t][0], ch[t][1]);
rev[t] ^= 1;
} void pushdown(int t) {
if (!isroot(t)) pushdown(fa[t]);
if (rev[t]) {
pushnow(ch[t][0]);
pushnow(ch[t][1]);
rev[t] = 0;
}
} void newnode(int vl) {
++cnt;
fa[cnt] = ch[cnt][0] = ch[cnt][1] = 0;
minval[cnt] = val[cnt] = vl;
rev[cnt] = 0;
} bool son(int t) {
return t == ch[fa[t]][1];
} void rotate(int t) {
int f = fa[t], g = fa[f];
bool a = son(t), b = a ^ 1;
if (!isroot(f)) ch[g][son(f)] = t;
fa[t] = g;
ch[f][a] = ch[t][b];
fa[ch[t][b]] = f;
ch[t][b] = f;
fa[f] = t;
pushup(f);
pushup(t);
} void splay(int t) {
pushdown(t);
while (!isroot(t)) {
int f = fa[t];
if (!isroot(f)) {
if (son(f) ^ son(t)) rotate(t);
else rotate(f);
}
rotate(t);
}
} void access(int t) {
int tmp = 0; // 需要设定初值
while (t) {
splay(t);
ch[t][1] = tmp;
pushup(t);
tmp = t;
t = fa[t];
}
} void makeroot(int t) {
access(t);
splay(t);
pushnow(t);
} void link(int x, int y) {
makeroot(x);
fa[x] = y;
} void cut(int x, int y) {
makeroot(x);
access(y);
splay(y);
fa[x] = ch[y][0] = 0;
pushup(y);
} }; using Link_Cut_Tree::minval;
using Link_Cut_Tree::newnode;
using Link_Cut_Tree::link;
using Link_Cut_Tree::cut;
using Link_Cut_Tree::makeroot;
using Link_Cut_Tree::access; namespace Functional_Segment_Tree { const int LOG = 30; int cnt = 0;
int siz[N * LOG], ls[N * LOG], rs[N * LOG], rt[N]; void insert(int &t, int last, int l, int r, int pos) {
t = ++cnt;
ls[t] = ls[last];
rs[t] = rs[last];
siz[t] = siz[last] + 1;
if (l == r) return;
int mid = (l + r) >> 1;
if (pos <= mid) insert(ls[t], ls[last], l, mid, pos);
else insert(rs[t], rs[last], mid + 1, r, pos);
} int query(int t, int last, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) return siz[t] - siz[last];
int mid = (l + r) >> 1;
if (qr <= mid) return query(ls[t], ls[last], l, mid, ql, qr);
else if (ql > mid) return query(rs[t], rs[last], mid + 1, r, ql, qr);
else return query(ls[t], ls[last], l, mid, ql, mid) + query(rs[t], rs[last], mid + 1, r, mid + 1, qr);
} }; using Functional_Segment_Tree::rt;
using Functional_Segment_Tree::insert;
using Functional_Segment_Tree::query; namespace Union_Find { int fa[N << 1]; void init() {
for (int i = 1; i <= n; i++)
fa[i] = i;
} int find(int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
} bool merge(int x, int y) {
int fax = find(x), fay = find(y);
if (fax == fay) return 0;
fa[fax] = fay;
return 1;
} } using Union_Find::init;
using Union_Find::merge; int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
scanf("%d %d %d %d", &n, &m, &k, &typ);
for (int i = 1; i <= n; i++) newnode(m + 1);
for (int i = 1; i <= m; i++) newnode(i);
init();
for (int i = 1; i <= m; i++) {
scanf("%d %d", &u[i], &v[i]);
if (u[i] == v[i]) {
insert(rt[i], rt[i - 1], 0, m, i);
continue;
}
if (merge(u[i], v[i])) {
insert(rt[i], rt[i - 1], 0, m, 0);
link(u[i], n + i);
link(v[i], n + i);
} else {
makeroot(u[i]);
access(v[i]);
makeroot(v[i]);
int cur = minval[v[i]];
cut(v[cur], n + cur);
cut(u[cur], n + cur);
link(v[i], n + i);
link(u[i], n + i);
insert(rt[i], rt[i - 1], 0, m, cur);
}
}
for (int i = 1; i <= k; i++) {
int l, r; scanf("%d %d", &l, &r);
if (typ) l ^= lastans, r ^= lastans;
if (l > r) swap(l, r);
lastans = n - query(rt[r], rt[l - 1], 0, m, 0, l - 1);
printf("%d\n", lastans);
}
return 0;
}

BZOJ3514: Codechef MARCH14 GERALD07加强版【LCT】【主席树】【思维】的更多相关文章

  1. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  2. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  3. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  4. 【BZOJ3514】Codechef MARCH14 GERALD07加强版 LCT+主席树

    题解: 还是比较简单的 首先我们的思路是 确定起点 然后之后贪心的选择边(也就是越靠前越希望选) 我们发现我们只需要将起点从后向前枚举 然后用lct维护连通性 因为强制在线,所以用主席树记录状态就可以 ...

  5. bzoj3514 Codechef MARCH14 GERALD07加强版 lct预处理+主席树

    Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1951  Solved: 746[Submi ...

  6. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  7. BZOJ3514: Codechef MARCH14 GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密.接下来M ...

  8. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT维护最大生成树 主席树

    题面 考虑没有询问,直接给你一个图问联通块怎么做. 并查集是吧. 现在想要动态地做,那么应该要用LCT. 考虑新加进来一条边,想要让它能够减少一个联通块的条件就是现在边的两个端点还没有联通. 如果联通 ...

  9. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT+可持久化线段树

    自己独自想出来并切掉还是很开心的~ Code: #include <bits/stdc++.h> #define N 400005 #define inf 1000000000 #defi ...

  10. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3514 题意概括 N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. N ...

随机推荐

  1. Blue_Flke团队项目设计完善&编码测试

    任务1:文档<软件设计方案说明书>github地址:https://github.com/13993013291/ruanjianguigexuqiu 任务2:项目集成开发环境:eclip ...

  2. fragment 小结

    1:注意事项   3.0以前的Android 版本要使用FragmentActivity 来装载Fragment ,使用到support v4包.   3.0以后的版本可以直接在Activity里面添 ...

  3. xinwenti

    angularjs  angular2脏检查机制和数据双向绑定远离 angular2 aot编译

  4. 查询ORACLE存储关联表

    SELECT DISTINCT * FROM user_sourceWHERE TYPE = 'PROCEDURE'AND upper(text) LIKE '%PS_KL_ABS_002_DATA% ...

  5. eclipse 与 tomcat 的那些路径

    我们用mvn创建了一个web工程,同时希望在eclipse里调试开发.mvn有mvn的路径要求,eclispe有eclipse的默认路径,怎么整合二者? 首先介绍一下eclipse的默认路径. 重点在 ...

  6. Vue.js教程--基础2(事件处理 表单输入绑定

    事件处理 表单输入绑定 事件处理 监听v-on 监听 DOM 事件,并在触发时运行一些 JavaScript 代码. 可以在v-on:click=''加内联语句. 有时也需要在内联语句处理器中访问原始 ...

  7. Android之RecyclerView实现时光轴

    做项目的过程中有个需求需要时光轴,于是网上找了部分资料 ,写了个案例,现在分享给大家. 如图: activity_main.xml <?xml version="1.0" e ...

  8. 正睿 2019 省选附加赛 Day1 T1 考考试

    比较奇怪的一个枚举题. 注意到10=2*5,所以10^k的二进制表示一定恰好在末尾有k个0. 考虑从小到大去填这个十进制数. 填的时候记录一下当前的二进制表示. 每次尝试去填0或者10^k. 如果要填 ...

  9. Thrift0.11.0基于Intellij IDEA的简单的例子

    前言 目前流行的服务调用方式有很多种,例如基于 SOAP 消息格式的 Web Service,基于 JSON 消息格式的 RESTful 服务等.其中所用到的数据传输方式包括 XML,JSON 等,然 ...

  10. sql server2008 如何获取上月、上周、昨天、今天、本周、本月的查询周期(通过存储过程)

    我这边有一个需求要统计订单数据,需要统计订单的上传日期,统计的模块大概是 那么上月.上周.昨天.今天.本周.本月应该是怎样呢? 1.数据分析 因为今天是动态数据,我要查月份(上月.本月),应该是一个日 ...