设计并实现最不经常使用(LFU)缓存的数据结构。它应该支持以下操作:get 和 put

get(key) - 如果键存在于缓存中,则获取键的值(总是正数),否则返回 -1。
put(key, value) - 如果键不存在,请设置或插入值。当缓存达到其容量时,它应该在插入新项目之前,使最不经常使用的项目无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,最近最少使用的键将被去除。

进阶:
你是否可以在 O(1) 时间复杂度内执行两项操作?

示例:

LFUCache cache = new LFUCache( 2 /* capacity (缓存容量) */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 去除 key 2
cache.get(2); // 返回 -1 (未找到key 2)
cache.get(3); // 返回 3
cache.put(4, 4); // 去除 key 1
cache.get(1); // 返回 -1 (未找到 key 1)
cache.get(3); // 返回 3
cache.get(4); // 返回 4

思路:这道题可以参考上一篇LRU:http://www.cnblogs.com/DarrenChan/p/8744354.html

LFU多了一个频率值的计算,只有当频率值相同的时候,才按照LRU那种方式进行排列,即最近最不经常使用的淘汰。

借鉴一种思想,因为时间复杂度是O(1),所以不能用循环遍历,方法就是采用3个HashMap和1个LinkedHashSet。

第一个hashMap存储put进去的key和value,第二个HashMap存储每个key的频率值,第三个hashMap存储每个频率的相应的key的值的集合。LinkedHashSet存储key的集合,这里用HashSet是因为其是由HashMap底层实现的,可以O(1)时间复杂度查找元素,而且linked是有序的,同一频率值越往后越最近访问。

直接上代码:

import java.util.HashMap;
import java.util.LinkedHashSet; class LFUCache { public int capacity;//容量大小
public HashMap<Integer, Integer> map = new HashMap<>();//存储put进去的key和value
public HashMap<Integer, Integer> frequent = new HashMap<>();//存储每个key的频率值
//存储每个频率的相应的key的值的集合,这里用HashSet是因为其是由HashMap底层实现的,可以O(1)时间复杂度查找元素
//而且linked是有序的,同一频率值越往后越最近访问
public HashMap<Integer, LinkedHashSet<Integer>> list = new HashMap<>();
int min = -1;//标记当前频率中的最小值 public LFUCache(int capacity) {
this.capacity = capacity;
} public int get(int key) {
if(!map.containsKey(key)){
return -1;
}else{
int value = map.get(key);//获取元素的value值
int count = frequent.get(key);
frequent.put(key, count + 1); list.get(count).remove(key);//先移除当前key //更改min的值
if(count == min && list.get(count).size() == 0)
min++; LinkedHashSet<Integer> set = list.containsKey(count + 1) ? list.get(count + 1) : new LinkedHashSet<Integer>();
set.add(key);
list.put(count + 1, set); return value;
} } public void put(int key, int value) {
if(capacity <= 0){
return;
}
//这一块跟get的逻辑一样
if(map.containsKey(key)){
map.put(key, value);
int count = frequent.get(key);
frequent.put(key, count + 1); list.get(count).remove(key);//先移除当前key //更改min的值
if (count == min && list.get(count).size() == 0)
min++; LinkedHashSet<Integer> set = list.containsKey(count + 1) ? list.get(count + 1) : new LinkedHashSet<Integer>();
set.add(key);
list.put(count + 1, set);
}else{
if(map.size() >= capacity){
Integer removeKey = list.get(min).iterator().next();
list.get(min).remove(removeKey);
map.remove(removeKey);
frequent.remove(removeKey);
}
map.put(key, value);
frequent.put(key, 1);
LinkedHashSet<Integer> set = list.containsKey(1) ? list.get(1) : new LinkedHashSet<Integer>();
set.add(key);
list.put(1, set); min = 1;
} } public static void main(String[] args) {
LFUCache lfuCache = new LFUCache(2);
lfuCache.put(2, 1);
lfuCache.put(3, 2);
System.out.println(lfuCache.get(3));
System.out.println(lfuCache.get(2));
lfuCache.put(4, 3);
System.out.println(lfuCache.get(2));
System.out.println(lfuCache.get(3));
System.out.println(lfuCache.get(4));
}
}

原题链接:https://leetcode-cn.com/problems/lfu-cache/description/

[LeetCode]460.LFU缓存机制的更多相关文章

  1. [Leetcode]146.LRU缓存机制

    Leetcode难题,题目为: 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key ...

  2. Leetcode 146. LRU 缓存机制

    前言 缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存.当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪 ...

  3. LeetCode 146. LRU缓存机制(LRU Cache)

    题目描述 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (k ...

  4. Java实现 LeetCode 146 LRU缓存机制

    146. LRU缓存机制 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - ...

  5. [LeetCode] 460. LFU Cache 最近最不常用页面置换缓存器

    Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the f ...

  6. leetcode 460. LFU Cache

    hash:存储的key.value.freq freq:存储的freq.key,也就是说出现1次的所有key在一起,用list连接 class LFUCache { public: LFUCache( ...

  7. leetcode:146. LRU缓存机制

    题目描述: 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 ( ...

  8. leetcode 146. LRU Cache 、460. LFU Cache

    LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...

  9. leetcode LRU缓存机制(list+unordered_map)详细解析

    运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (key) 存 ...

随机推荐

  1. [转]一台电脑上的git同时使用两个github账户

    需求: 公司有github账号,自己有github账号,想在git上同时使用,两者互不干扰. 思路: 管理两个SHH key. 解决方案: 一.生成两个SSH key 为了举例方便,这里使用“one” ...

  2. [转]IC行业的牛人

    转载的:   说来惭愧,我所了解的牛人也只是大学教授,工业界的高手了解的还太少,虽然我对教育界的牛人了解的也不多,但这里也要牢骚几句,论坛上的人好像只是认识Gray,Razavi,Allen,Lee, ...

  3. Knockout: radio选项切换引发click事件的一点总结

    1.场景:如下图,当选择定期存款时,输入框右边出现红色的必输项星号,当选择活期存款时,不再出现该星号. 2.思路一:不使用knockout,直接用click事件,就可以实现这个需求,代码如下: < ...

  4. haproxy 日志配置

    haproxy日志配置 haproxy在默认情况不会记录日志,除了在haproxy.conf中的global段指定日志的输出外,还需要配置系统日志的配置文件.下面以centos6.4为例,haprox ...

  5. redis 3.2.3的源码安装

    Install necessary packages On CentOS : yum install wget make gcc tcl On CentOS yum install wget make ...

  6. Kinect v2 记录

    最多可同时识别跟踪 6 人,每人可识别到 25 个关节数据.可以根据上身 10 个关节数据来判断坐姿状态. 物理极限识别范围:0.5m – 4.5m,最佳识别范围:0.8m – 3.5m. 深度数据可 ...

  7. ios block一定会犯的几个错误

    贴几段斯坦福大学关于gcd的代码,这段代码逐步演示了如何修正错误,其中用到的既是串行队列   1.这个是原始代码 - (void)viewWillAppear:(BOOL)animated { NSD ...

  8. mac 上面安装jdk 1.6

    下载地址 https://support.apple.com/kb/dl1572?locale=zh_CN orcale 支持mac的最低版本是1.7

  9. Unity Shaders and Effects Cookbook (4-1)(4-2)静态立方体贴图的创建与使用

    開始学习第4章 - 着色器的反射 看完了1.2节,来记录一下.反射主要是利用了 Cubemap 立方体贴图. 认识Cubemap 立方体贴图.就如同名字所说.在一个立方体上有6张图.就这样觉得吧. 假 ...

  10. impress.js 一个创建在线幻灯的js库

    真的好奇怪,我居然会写前端技术的博客.没有办法的,最近实习,看的大多是前端.所以今天就用这个来练练手了. Impress.js 是一个非常棒的用来创建在线演示的Javascript库.它基于CSS3转 ...