HDU 3045 - Picnic Cows - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045
Farmer Carolina takes her N (1<N≤400000) cows to the destination, but she finds every cow’s degree of interest in this activity is so different that they all loss their interests. So she has to group them to different teams to make sure that every cow can go to a satisfied team. Considering about the security, she demands that there must be no less than T(1<T≤N)cows in every team. As every cow has its own interest degree of this picnic, we measure this interest degree’s unit as “Moo~”. Cows in the same team should reduce their Moo~ to the one who has the lowest Moo~ in this team——It’s not a democratical action! So Carolina wishes to minimize the TOTAL reduced Moo~s and groups N cows into several teams.
For example, Carolina has 7 cows to picnic and their Moo~ are ‘8 5 6 2 1 7 6’ and at least 3 cows in every team. So the best solution is that cow No.2,4,5 in a team (reduce (2-1)+(5-1) Moo~)and cow No.1,3,6,7 in a team (reduce ((7-6)+(8-6)) Moo~),the answer is 8.
Input
The input contains multiple cases.
For each test case, the first line has two integer N, T indicates the number of cows and amount of Safe-base line.
Following n numbers, describe the Moo~ of N cows , 1st is cow 1 , 2nd is cow 2, and so on.
Output
One line for each test case, containing one integer means the minimum of the TOTAL reduced Moo~s to group N cows to several teams.
Sample Input
7 3
8 5 6 2 1 7 6
Sample Output
8
题意:
现有N只奶牛,每只奶牛都有一个Moo[i]值,代表它对野餐的感兴趣程度;
现在要给奶牛们分成若干组,限定每组至少有t只奶牛;
每一组的奶牛的Moo值都会减少为其所在组的奶牛们中最小的Moo值。
题解:
首先对N只奶牛按照Moo值从小到大排序一下,重新编号为1~N;
设dp[i]代表前i项的minimize the TOTAL reduced Moo~s;
设sum[i]是Moo[]的前缀和数组;
则状态转移方程为dp[i] = min{ dp[j] + ( sum[i] - sum[j] ) - Moo[j+1] * ( i - j ) },t ≤ j ≤ i - t;
可以看出要完成全部状态转移,是O(n2)的时间复杂度,N≤400000的范围,显然是要超时的,上斜率优化。
在计算dp[i]时,对于j的可能取值,假设有a,b,满足t ≤ a < b ≤ i - t,
若有dp[b] + ( sum[i] - sum[b] ) - Moo[b+1] * ( i - b ) ≤ dp[a] + ( sum[i] - sum[a] ) - Moo[a+1] * ( i - a )
则可以说b点优于a点;
对上式进行变形可得:
我们不妨设
那么就有:
b点优于a点 <=> g(a,b) ≤ i
b点劣于a点 <=> g(a,b) > i
于是进一步的,就有:
在计算dp[i]时,对于j的可能取值,假设有a,b,c,满足t ≤ a < b < c ≤ i - t,
若g(a,b) ≥ g(b,c),则b点必然淘汰。
证明:若g(b,c) ≤ i,则c点优于b点;若g(b,c) > i,则g(a,b) ≥ g(b,c) > i,则b点劣于a点;不管如何,b点都被淘汰。
再然后就是按照上面的性质,维护一个下凸的图形,斜率逐渐增大。
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=+; int n,t;
LL Moo[maxn],sum[maxn];
LL dp[maxn];
int q[maxn],head,tail; LL up(int a,int b)
{
return (dp[b]-sum[b]+Moo[b+]*b)-(dp[a]-sum[a]+Moo[a+]*a);
}
LL down(int a,int b)
{
return Moo[b+]-Moo[a+];
} int main()
{
while(scanf("%d%d",&n,&t)!=EOF)
{
for(int i=;i<=n;i++) scanf("%I64d",&Moo[i]);
sort(Moo+,Moo+n+);
sum[]=;
for(int i=;i<=n;i++) sum[i]=sum[i-]+Moo[i]; head=tail=;
dp[]=;
for(int i=;i<=min(*t-,n);i++) dp[i]=dp[i-]+Moo[i]-Moo[]; for(int i=*t;i<=n;i++)
{
int j=i-t;
while(head+<tail)
{
int a=q[tail-], b=q[tail-];
if(up(a,b)*down(b,j)>=up(b,j)*down(a,b)) tail--;
else break;
}
q[tail++]=j; while(head+<tail)
{
int a=q[head], b=q[head+];
if(up(a,b)<=i*down(a,b)) head++;
else break;
}
j=q[head];
dp[i]=dp[j]+(sum[i]-sum[j])-Moo[j+]*(i-j);
} printf("%I64d\n",dp[n]);
}
}
注意,本题Moo[i]没有明确说明范围,所以用int就爆掉了,要用long long,并且也不能直接g=up/down然后去比较g(),只能化成乘法形式。
HDU 3045 - Picnic Cows - [斜率DP]的更多相关文章
- hdu 3045 Picnic Cows(斜率优化DP)
题目链接:hdu 3045 Picnic Cows 题意: 有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少. ...
- HDU 3045 Picnic Cows(斜率优化DP)
Picnic Cows Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 3045 picnic cows(斜率DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045 题目大意:有n个数,可以把n个数分成若干组,每组不得小于m个数,每组的价值=除了该组最小值以外每 ...
- HDU 3045 Picnic Cows
$dp$,斜率优化. 设$dp[i]$表示$1$至$i$位置的最小费用,则$dp[i]=min(dp[j]+s[i]-s[j]-(i-j)*x[j+1])$,$dp[n]$为答案. 然后斜率优化就可以 ...
- HDU3045 Picnic Cows —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-3045 Picnic Cows Time Limit: 8000/4000 MS (Java/Others) Memor ...
- HDU 2829 Lawrence (斜率DP)
斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...
- HDU 3507 - Print Article - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507 Zero has an old printer that doesn't work well s ...
- HDU 3480 Division(斜率DP裸题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 题目大意:将n个数字分成m段,每段价值为(该段最大值-该段最小值)^2,求最小的总价值. 解题思 ...
- [kuangbin带你飞]专题二十 斜率DP
ID Origin Title 20 / 60 Problem A HDU 3507 Print Article 13 / 19 Problem B HDU 2829 Lawr ...
随机推荐
- JAVAWEB开发之Session的追踪创建和销毁、JSP具体解释(指令,标签,内置对象,动作即转发和包括)、JavaBean及内省技术以及EL表达式获取内容的使用
Session的追踪技术 已知Session是利用cookie机制的server端技术.当client第一次訪问资源时 假设调用request.getSession() 就会在server端创建一个由 ...
- Hibernate_day01讲义_使用Hibernate完成对CRM系统中客户管理的DAO中的CRUD的操作
- SpringMVC -- 梗概--源码--壹--数据传递
附:实体类 Class : User package com.c61.entity; import java.text.SimpleDateFormat; import java.util.Date; ...
- 【代码审计】JTBC(CMS)_PHP_v3.0 任意文件删除漏洞分析
0x00 环境准备 JTBC(CMS)官网:http://www.jtbc.cn 网站源码版本:JTBC_CMS_PHP(3.0) 企业版 程序源码下载:http://download.jtbc. ...
- Git 学习笔记--3.EGit使用手册
zz http://blog.csdn.net/pandakong/article/details/7234974 EGit是Eclipse上的Git插件,官方内容参看http://wiki.ecli ...
- Splash 对象属性
args js_enabled resource_timeout images_enabled plugins_enabled scroll_position
- Java访问数据库Mysql
一.概述 本文主要介绍Java接连数据库的基本方法和步骤,并对其中的几个要点进行简要说明. 二.数据库访问步骤 在Java中连接数据库进行的访问主要有以下几个步骤: 加载数据库驱动 注册数据库驱动 建 ...
- Delphi中ClientDataSet的用法小结
Delphi中ClientDataSet的用法小结 TClientDataSet控件继承自TDataSet,其数据存储文件格式扩展名为 .cds,是基于文件型数据存储和操作的控件.该控件封装了对数据进 ...
- 四、K3 WISE 开发插件《工业单据老单插件开发新手指导》
开发环境:K/3 Wise 13.0.K/3 Bos开发平台.Visual Basic 6.0 =============================================== 目录 一 ...
- 【问题记录系列】the resource is not on the build path of a java project
在eclipse中新建了一个maven项目搭建Spring源码阅读环境,创建一个bean生产getter和setter方法的时候报错“the resource is not on the build ...