题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045

It’s summer vocation now. After tedious milking, cows are tired and wish to take a holiday. So Farmer Carolina considers having a picnic beside the river. But there is a problem, not all the cows consider it’s a good idea! Some cows like to swim in West Lake, some prefer to have a dinner in Shangri-la ,and others want to do something different. But in order to manage expediently, Carolina coerces all cows to have a picnic! 
Farmer Carolina takes her N (1<N≤400000) cows to the destination, but she finds every cow’s degree of interest in this activity is so different that they all loss their interests. So she has to group them to different teams to make sure that every cow can go to a satisfied team. Considering about the security, she demands that there must be no less than T(1<T≤N)cows in every team. As every cow has its own interest degree of this picnic, we measure this interest degree’s unit as “Moo~”. Cows in the same team should reduce their Moo~ to the one who has the lowest Moo~ in this team——It’s not a democratical action! So Carolina wishes to minimize the TOTAL reduced Moo~s and groups N cows into several teams. 
For example, Carolina has 7 cows to picnic and their Moo~ are ‘8 5 6 2 1 7 6’ and at least 3 cows in every team. So the best solution is that cow No.2,4,5 in a team (reduce (2-1)+(5-1) Moo~)and cow No.1,3,6,7 in a team (reduce ((7-6)+(8-6)) Moo~),the answer is 8. 

Input

The input contains multiple cases. 
For each test case, the first line has two integer N, T indicates the number of cows and amount of Safe-base line. 
Following n numbers, describe the Moo~ of N cows , 1st is cow 1 , 2nd is cow 2, and so on. 
Output

One line for each test case, containing one integer means the minimum of the TOTAL reduced Moo~s to group N cows to several teams.

Sample Input

7 3
8 5 6 2 1 7 6

Sample Output

8

题意:

现有N只奶牛,每只奶牛都有一个Moo[i]值,代表它对野餐的感兴趣程度;

现在要给奶牛们分成若干组,限定每组至少有t只奶牛;

每一组的奶牛的Moo值都会减少为其所在组的奶牛们中最小的Moo值。

题解:

首先对N只奶牛按照Moo值从小到大排序一下,重新编号为1~N;

设dp[i]代表前i项的minimize the TOTAL reduced Moo~s;

设sum[i]是Moo[]的前缀和数组;

则状态转移方程为dp[i] = min{ dp[j] + ( sum[i] - sum[j] ) - Moo[j+1] * ( i - j ) },t ≤ j ≤ i - t;

可以看出要完成全部状态转移,是O(n2)的时间复杂度,N≤400000的范围,显然是要超时的,上斜率优化。

在计算dp[i]时,对于j的可能取值,假设有a,b,满足t ≤ a < b ≤ i - t,

若有dp[b] + ( sum[i] - sum[b] ) - Moo[b+1] * ( i - b ) ≤ dp[a] + ( sum[i] - sum[a] ) - Moo[a+1] * ( i - a )

则可以说b点优于a点;

对上式进行变形可得:

我们不妨设

那么就有:

b点优于a点 <=> g(a,b) ≤ i

b点劣于a点 <=> g(a,b) > i

于是进一步的,就有:

在计算dp[i]时,对于j的可能取值,假设有a,b,c,满足t ≤ a < b < c ≤ i - t,

若g(a,b) ≥ g(b,c),则b点必然淘汰。

证明:若g(b,c) ≤ i,则c点优于b点;若g(b,c) > i,则g(a,b) ≥ g(b,c) > i,则b点劣于a点;不管如何,b点都被淘汰。

再然后就是按照上面的性质,维护一个下凸的图形,斜率逐渐增大。

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=+; int n,t;
LL Moo[maxn],sum[maxn];
LL dp[maxn];
int q[maxn],head,tail; LL up(int a,int b)
{
return (dp[b]-sum[b]+Moo[b+]*b)-(dp[a]-sum[a]+Moo[a+]*a);
}
LL down(int a,int b)
{
return Moo[b+]-Moo[a+];
} int main()
{
while(scanf("%d%d",&n,&t)!=EOF)
{
for(int i=;i<=n;i++) scanf("%I64d",&Moo[i]);
sort(Moo+,Moo+n+);
sum[]=;
for(int i=;i<=n;i++) sum[i]=sum[i-]+Moo[i]; head=tail=;
dp[]=;
for(int i=;i<=min(*t-,n);i++) dp[i]=dp[i-]+Moo[i]-Moo[]; for(int i=*t;i<=n;i++)
{
int j=i-t;
while(head+<tail)
{
int a=q[tail-], b=q[tail-];
if(up(a,b)*down(b,j)>=up(b,j)*down(a,b)) tail--;
else break;
}
q[tail++]=j; while(head+<tail)
{
int a=q[head], b=q[head+];
if(up(a,b)<=i*down(a,b)) head++;
else break;
}
j=q[head];
dp[i]=dp[j]+(sum[i]-sum[j])-Moo[j+]*(i-j);
} printf("%I64d\n",dp[n]);
}
}

注意,本题Moo[i]没有明确说明范围,所以用int就爆掉了,要用long long,并且也不能直接g=up/down然后去比较g(),只能化成乘法形式。

HDU 3045 - Picnic Cows - [斜率DP]的更多相关文章

  1. hdu 3045 Picnic Cows(斜率优化DP)

    题目链接:hdu 3045 Picnic Cows 题意: 有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少. ...

  2. HDU 3045 Picnic Cows(斜率优化DP)

    Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  3. HDU 3045 picnic cows(斜率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3045 题目大意:有n个数,可以把n个数分成若干组,每组不得小于m个数,每组的价值=除了该组最小值以外每 ...

  4. HDU 3045 Picnic Cows

    $dp$,斜率优化. 设$dp[i]$表示$1$至$i$位置的最小费用,则$dp[i]=min(dp[j]+s[i]-s[j]-(i-j)*x[j+1])$,$dp[n]$为答案. 然后斜率优化就可以 ...

  5. HDU3045 Picnic Cows —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-3045 Picnic Cows Time Limit: 8000/4000 MS (Java/Others)    Memor ...

  6. HDU 2829 Lawrence (斜率DP)

    斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...

  7. HDU 3507 - Print Article - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507 Zero has an old printer that doesn't work well s ...

  8. HDU 3480 Division(斜率DP裸题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 题目大意:将n个数字分成m段,每段价值为(该段最大值-该段最小值)^2,求最小的总价值. 解题思 ...

  9. [kuangbin带你飞]专题二十 斜率DP

            ID Origin Title   20 / 60 Problem A HDU 3507 Print Article   13 / 19 Problem B HDU 2829 Lawr ...

随机推荐

  1. SpringBoot自动配置xxxAutoConfiguration 的使用

    https://sdqali.in/blog/2016/07/16/controlling-redis-auto-configuration-for-spring-boot-session/ 常用的类 ...

  2. vs2010,vs2012如何连接vss2005,vss2008

    打开vs2010.依次打开[工具]-[选项]-[源代码管理] 这个时候可以看到管理插件中有Microsoft Visual SourceSafe选项(若没有该选项,重新安装VSS即可). 连接上项目后 ...

  3. 【代码审计】LaySNS_v2.2.0 System.php页面存在代码执行漏洞分析.

      0x00 环境准备 LaySNS官网:http://www.laysns.com/ 网站源码版本:LaySNS_v2.2.0 程序源码下载:https://pan.lanzou.com/i0l38 ...

  4. Selenium 异常处理

    在使用 Selenium 的过程中,难免会遇到一些异常,例如超时.节点未找到等错误,我们可以使用 try...except... 语句来捕获各种异常 更多异常类参考官网:https://seleniu ...

  5. CookieUtils工具类

    package com.taotao.common.util; import java.io.UnsupportedEncodingException; import java.net.URLDeco ...

  6. UISegmentedControl的基本用法

    本文转载至 http://www.tuicool.com/articles/yUfURj 原文  http://blog.csdn.net/hmt20130412/article/details/38 ...

  7. iOS - 系统权限(关键时刻很有用的)

    iOS开发中权限问题: APP开发避免不开系统权限的问题,如何在APP以更加友好的方式向用户展示系统权限,似乎也是开发过程中值得深思的一件事: 那如何提高APP获取iOS系统权限的通过率呢?有以下几种 ...

  8. PHP 二叉树 二叉排序树实现

    <?php /** * PHP 二叉树 * @author : xiaojiang 2014-01-01 * */ class Tree { protected $k = null; prote ...

  9. Eclipse配色方案插件

    Eclipse配色方案插件 真漂亮! 最近发现了一个Eclipse配色方案插件,这回给Eclipse配色太方便了. 插件主页:http://eclipsecolorthemes.org/ 插件提供了上 ...

  10. 【前端系列】移动前端开发之viewport的深入理解

    在页面上没有设置width所以样式显示有问题,本来选择的响应式模式的320*410结果看到页面的实际宽度确实980px. 本文转载自: 在移动设备上进行网页的重构或开发,首先得搞明白的就是移动设备上的 ...