CSU1612Destroy Tunnels(强连通)传递闭包
原来早忘记了离散里含有这么一个叫传递闭包的东西
矩阵A的闭包B = A U A^2 U A^3 U ...
所以这里直接如果A[i][j]!= 0,建边i->j跑一遍强连通,看是不是只有一个强连通分量,>=2说明不能所有点都!=0输出exists
否则说明所有i->j(i!=j)都有B[i][j]!= 0输出not exists
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, (L + R)>>1
#define rson k<<1|1, ((L + R)>>1) + 1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++)
#define dec(i, a, b) for(int i = a; i >= b; i --) template<class T> T CMP_MIN(T a, T b) { return a < b; }
template<class T> T CMP_MAX(T a, T b) { return a > b; }
template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-;
LL MOD = ; vector<int> G[MAXN];
int pre[MAXN], lowlink[MAXN], sccno[MAXN], dfs_clock, scc_cnt;
stack<int>S; void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
int si = G[u].size();
for(int i = ; i < si; i ++)
{
int v = G[u][i];
if(!pre[v]) {
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u]) {
scc_cnt++;
for(;;) {
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void find_scc(int n)
{
dfs_clock = scc_cnt = ;
mem0(sccno); mem0(pre);
for(int i = ; i < n; i ++ )
if(!pre[i]) dfs(i);
} int t, n, x; int main()
{
while(~scanf("%d", &t)) while(t--) {
scanf("%d", &n);
rep (i, , n) G[i].clear();
rep (i, , n - ) rep (j, , n - ) {
scanf("%d", &x);
if(x) G[i].push_back(j);
}
find_scc(n);
puts(scc_cnt == ? "not exists" : "exists");
}
return ;
}
CSU1612Destroy Tunnels(强连通)传递闭包的更多相关文章
- CSU1612Destroy Tunnels(强连通)
Destroy Tunnels 原来早忘记了离散里含有这么一个叫传递闭包的东西 矩阵A的闭包B = A U A^2 U A^3 U ... 所以这里直接如果A[i][j]!= 0,建边i->j跑 ...
- 受欢迎的牛 [HAOI2006] [强连通] [传递闭包(划)]
Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛 A 认为牛 B受欢迎.这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A ...
- CF402E Strictly Positive Matrix 传递闭包用强连通分量判断
题目链接:http://codeforces.com/problemset/problem/402/E /**算法分析: 这道题考察了图论基本知识,就是传递闭包,可以构图用强联通分量来判断 */ #i ...
- BZOJ5017 Snoi2017炸弹(线段树+强连通分量+缩点+传递闭包)
容易想到每个炸弹向其能引爆的炸弹连边,tarjan缩点后bitset传递闭包.进一步发现每个炸弹能直接引爆的炸弹是一段连续区间,于是线段树优化建图即可让边的数量降至O(nlogn).再冷静一下由于能间 ...
- ZOJ 3232 It's not Floyd Algorithm --强连通分量+Floyd
题意:给你一个传递闭包的矩阵,mp[u][v] = 1表示u可以到达v,为0代表不可到达,问你至少需要多少条边组成的传递闭包符合这个矩阵给出的关系 分析:考虑一个强连通分量,如果这个分量有n个节点,那 ...
- UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)
题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...
- HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...
- 【uva 247】Calling Circles(图论--Floyd 传递闭包+并查集 连通分量)
题意:有N个人互相打了M次电话,请找出所有电话圈(Eg.a→b,b→c,c→d,d→a 就算一个电话圈)并输出.(N≤25,L≤25,注意输出格式) 解法:由于N比较小所有n^2或n^3的复杂度都没有 ...
- HDU5934 强连通分量
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5934 根据距离关系建边 对于强连通分量来说,只需引爆话费最小的炸弹即可引爆整个强连通分量 将所有的强连通分 ...
随机推荐
- 解决:make:cc 命令未找到的解决方法
安装Redis的时候报这个错误 原因:未安装gcc 解决方法:安装gcc 自动安装,包括依赖库[root@VM_220_111_centos redis-3.2.9]# yum -y install ...
- CentOS查看CPU、内存、版本等系统信息
CentOS查看系统信息 一:查看CPU more /proc/cpuinfo | grep "model name" grep "model name" /p ...
- Knockout结合Bootstrap创建动态UI--产品列表管理
本篇文章结合Bootstrap创建一个比较完整的应用,对产品列表进行管理,包括产品的增加.删除.修改. 需要的引用 <script type='text/javascript' src='htt ...
- 4666 Hyperspace stl
当时自己做的时候没有这么想,想的是每个象限去找一个无穷值来作为比较点.但是很麻烦 代码: #include <stdio.h> #include <string.h> #inc ...
- 三重Des对称加密在Android、Ios 和Java 平台的实现
引言 如今手机app五彩缤纷,确保手机用户的数据安全是开发人员必须掌握的技巧,下面通过实例介绍DES在android.ios.java平台的使用方法: DES加密是目前最常用的对称加密方式, ...
- 什么是web?什么是web服务器?什么是应用服务器?
1.什么是Web? 简单来说,Web就是在Http协议基础之上,利用浏览器进行访问的网站.目前来看最常用的意义是指在 Intenet 上和 HTML 相关的部分.换句话说,目前在 Intenet 上通 ...
- 《Effective C++》第2章 构造/析构/赋值运算(1)-读书笔记
章节回顾: <Effective C++>第1章 让自己习惯C++-读书笔记 <Effective C++>第2章 构造/析构/赋值运算(1)-读书笔记 <Effecti ...
- SQL SERVER - set statistics time on的理解
一.set statistics time on的作用 显示分析.编译和执行各语句所需的毫秒数. 二.语法 SET STATISTICS TIME { ON | OFF } 注释 1.当 SET ST ...
- 《gradle 用户指南中文版》目录
gradle 用户指南 版权所有©2007-2017 Hans Dockter,Adam Murdoch只要您不对这些副本收取任何费用,并且进一步规定,每个副本都包含本版权声明,无论是以印刷版还是电子 ...
- RDS 在线DDL诡异报错ERROR 1062 (23000): Duplicate entry
RDS上执行报错如下: MySQL [ad_billing]> ALTER TABLE ad_spending ADD COLUMN impr bigint(20) NOT NULL DEFAU ...