Destroy Tunnels

原来早忘记了离散里含有这么一个叫传递闭包的东西

矩阵A的闭包B = A U A^2 U A^3 U ...

所以这里直接如果A[i][j]!= 0,建边i->j跑一遍强连通,看是不是只有一个强连通分量,>=2说明不能所有点都!=0输出exists

否则说明所有i->j(i!=j)都有B[i][j]!= 0输出not exists

 #include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, (L + R)>>1
#define rson k<<1|1, ((L + R)>>1) + 1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++)
#define dec(i, a, b) for(int i = a; i >= b; i --) template<class T> T CMP_MIN(T a, T b) { return a < b; }
template<class T> T CMP_MAX(T a, T b) { return a > b; }
template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-;
LL MOD = ; vector<int> G[MAXN];
int pre[MAXN], lowlink[MAXN], sccno[MAXN], dfs_clock, scc_cnt;
stack<int>S; void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
int si = G[u].size();
for(int i = ; i < si; i ++)
{
int v = G[u][i];
if(!pre[v]) {
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u]) {
scc_cnt++;
for(;;) {
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void find_scc(int n)
{
dfs_clock = scc_cnt = ;
mem0(sccno); mem0(pre);
for(int i = ; i < n; i ++ )
if(!pre[i]) dfs(i);
} int t, n, x; int main()
{
while(~scanf("%d", &t)) while(t--) {
scanf("%d", &n);
rep (i, , n) G[i].clear();
rep (i, , n - ) rep (j, , n - ) {
scanf("%d", &x);
if(x) G[i].push_back(j);
}
find_scc(n);
puts(scc_cnt == ? "not exists" : "exists");
}
return ;
}

CSU1612Destroy Tunnels(强连通)传递闭包的更多相关文章

  1. CSU1612Destroy Tunnels(强连通)

    Destroy Tunnels 原来早忘记了离散里含有这么一个叫传递闭包的东西 矩阵A的闭包B = A U A^2 U A^3 U ... 所以这里直接如果A[i][j]!= 0,建边i->j跑 ...

  2. 受欢迎的牛 [HAOI2006] [强连通] [传递闭包(划)]

    Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛 A 认为牛 B受欢迎.这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A ...

  3. CF402E Strictly Positive Matrix 传递闭包用强连通分量判断

    题目链接:http://codeforces.com/problemset/problem/402/E /**算法分析: 这道题考察了图论基本知识,就是传递闭包,可以构图用强联通分量来判断 */ #i ...

  4. BZOJ5017 Snoi2017炸弹(线段树+强连通分量+缩点+传递闭包)

    容易想到每个炸弹向其能引爆的炸弹连边,tarjan缩点后bitset传递闭包.进一步发现每个炸弹能直接引爆的炸弹是一段连续区间,于是线段树优化建图即可让边的数量降至O(nlogn).再冷静一下由于能间 ...

  5. ZOJ 3232 It's not Floyd Algorithm --强连通分量+Floyd

    题意:给你一个传递闭包的矩阵,mp[u][v] = 1表示u可以到达v,为0代表不可到达,问你至少需要多少条边组成的传递闭包符合这个矩阵给出的关系 分析:考虑一个强连通分量,如果这个分量有n个节点,那 ...

  6. UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)

    题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...

  7. HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...

  8. 【uva 247】Calling Circles(图论--Floyd 传递闭包+并查集 连通分量)

    题意:有N个人互相打了M次电话,请找出所有电话圈(Eg.a→b,b→c,c→d,d→a 就算一个电话圈)并输出.(N≤25,L≤25,注意输出格式) 解法:由于N比较小所有n^2或n^3的复杂度都没有 ...

  9. HDU5934 强连通分量

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5934 根据距离关系建边 对于强连通分量来说,只需引爆话费最小的炸弹即可引爆整个强连通分量 将所有的强连通分 ...

随机推荐

  1. LeetCode 275. H-Index II

    275. H-Index II Add to List Description Submission Solutions Total Accepted: 42241 Total Submissions ...

  2. Attribute 'items' must be an array, a Collection or a Map错误解决!

    唉!真的要说一句话叫做论一串代码的重要性!就是如此的气人!气的牙根痒痒! 前几天刚刚写过SpringMVC之ModelAndView的 jsp值在浏览页面不显示的问题!也是因为这一串代码,但是这一次一 ...

  3. MongoDB 3.4 分片集群副本集 认证

    连接到router所在的MongoDB Shell  我本机端口设置在50000上 mongo --port 接下来的流程和普通数据库添加用户权限一样 db.createUser({user:&quo ...

  4. ana3+opencv+TensorFlow+NVIDIAGPU 安装

    http://blog.csdn.net/qq_30611601/article/details/79067982 这个博客写的挺完整的 当你发现你的anna下载的贼鸡儿的慢,你就需要使用清华的镜像网 ...

  5. yii2高级模板安装

    通过 Composer 安装 如果还没有安装 Composer,在 Linux 和 Mac OS X 中可以运行如下命令: curl -sS https://getcomposer.org/insta ...

  6. hadoop1.2.1伪分布模式安装教程

    1:软件环境准备 1.1Hadoop: 我们使用hadoop Release 1.2.1(stable)版本,下载链接: http://mirrors.ustc.edu.cn/apache/hadoo ...

  7. 【Python】测算代码运行时间

    整理自这里和这里 timeit模块 timeit模块定义了接受两个参数的 Timer 类.两个参数都是字符串. 第一个参数是你要计时的语句或者函数. 传递给 Timer 的第二个参数是为第一个参数语句 ...

  8. JavaScript---js的模块化

    js的模块模式被定义为给类提供私有和公共封装的一种方法,也就是我们常说的“模块化”. 怎么实现“模块化”? 通过闭包的原理来实现“模块化”  ,具体实现:1.必须有外部的封闭函数,该函数必须至少被调用 ...

  9. NEU 1496 Planar map 计算几何,点到线段距离 难度:0

    问题 H: Planar map 时间限制: 1 Sec  内存限制: 128 MB提交: 24  解决: 22[提交][状态][讨论版] 题目描述 Tigher has work for a lon ...

  10. sql杂记

    Create procedure 存储过程的声明 PIVOT的一般语法是:PIVOT(聚合函数(列) FOR 列 in (…) )AS P 通俗简单的说:PIVOT就是行转列,UNPIVOT就是列传行 ...