Destroy Tunnels

原来早忘记了离散里含有这么一个叫传递闭包的东西

矩阵A的闭包B = A U A^2 U A^3 U ...

所以这里直接如果A[i][j]!= 0,建边i->j跑一遍强连通,看是不是只有一个强连通分量,>=2说明不能所有点都!=0输出exists

否则说明所有i->j(i!=j)都有B[i][j]!= 0输出not exists

 #include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, (L + R)>>1
#define rson k<<1|1, ((L + R)>>1) + 1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++)
#define dec(i, a, b) for(int i = a; i >= b; i --) template<class T> T CMP_MIN(T a, T b) { return a < b; }
template<class T> T CMP_MAX(T a, T b) { return a > b; }
template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-;
LL MOD = ; vector<int> G[MAXN];
int pre[MAXN], lowlink[MAXN], sccno[MAXN], dfs_clock, scc_cnt;
stack<int>S; void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
int si = G[u].size();
for(int i = ; i < si; i ++)
{
int v = G[u][i];
if(!pre[v]) {
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u]) {
scc_cnt++;
for(;;) {
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void find_scc(int n)
{
dfs_clock = scc_cnt = ;
mem0(sccno); mem0(pre);
for(int i = ; i < n; i ++ )
if(!pre[i]) dfs(i);
} int t, n, x; int main()
{
while(~scanf("%d", &t)) while(t--) {
scanf("%d", &n);
rep (i, , n) G[i].clear();
rep (i, , n - ) rep (j, , n - ) {
scanf("%d", &x);
if(x) G[i].push_back(j);
}
find_scc(n);
puts(scc_cnt == ? "not exists" : "exists");
}
return ;
}

CSU1612Destroy Tunnels(强连通)传递闭包的更多相关文章

  1. CSU1612Destroy Tunnels(强连通)

    Destroy Tunnels 原来早忘记了离散里含有这么一个叫传递闭包的东西 矩阵A的闭包B = A U A^2 U A^3 U ... 所以这里直接如果A[i][j]!= 0,建边i->j跑 ...

  2. 受欢迎的牛 [HAOI2006] [强连通] [传递闭包(划)]

    Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛 A 认为牛 B受欢迎.这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A ...

  3. CF402E Strictly Positive Matrix 传递闭包用强连通分量判断

    题目链接:http://codeforces.com/problemset/problem/402/E /**算法分析: 这道题考察了图论基本知识,就是传递闭包,可以构图用强联通分量来判断 */ #i ...

  4. BZOJ5017 Snoi2017炸弹(线段树+强连通分量+缩点+传递闭包)

    容易想到每个炸弹向其能引爆的炸弹连边,tarjan缩点后bitset传递闭包.进一步发现每个炸弹能直接引爆的炸弹是一段连续区间,于是线段树优化建图即可让边的数量降至O(nlogn).再冷静一下由于能间 ...

  5. ZOJ 3232 It's not Floyd Algorithm --强连通分量+Floyd

    题意:给你一个传递闭包的矩阵,mp[u][v] = 1表示u可以到达v,为0代表不可到达,问你至少需要多少条边组成的传递闭包符合这个矩阵给出的关系 分析:考虑一个强连通分量,如果这个分量有n个节点,那 ...

  6. UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)

    题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...

  7. HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 最小路径覆盖的一篇博客:https://blog.csdn.net/qq_39627843/ar ...

  8. 【uva 247】Calling Circles(图论--Floyd 传递闭包+并查集 连通分量)

    题意:有N个人互相打了M次电话,请找出所有电话圈(Eg.a→b,b→c,c→d,d→a 就算一个电话圈)并输出.(N≤25,L≤25,注意输出格式) 解法:由于N比较小所有n^2或n^3的复杂度都没有 ...

  9. HDU5934 强连通分量

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5934 根据距离关系建边 对于强连通分量来说,只需引爆话费最小的炸弹即可引爆整个强连通分量 将所有的强连通分 ...

随机推荐

  1. ContentPresenter元素

    一个内容控件 分解它的“结构树”,肯定能够看到ContentPresenter“元素”,该元素的功能:用来为“内容控件”显示“Content”

  2. flask学习(七):URL反转

    1. 什么叫反转URL:从视图函数到url的转换叫做反转url 2. 反转url的用处: 1) 在页面重定向的时候,会使用url反转 2) 在模板中,也会使用url反转 3. 实例: 打印出了url

  3. 局部标签(gcc对c的扩展)

    每个语句内嵌表达式都是一个可以声明局部跳转标签的域.一个局部标签只是一个标识符:你可以使用通常的goto语句跳到它--但是只能在它所属的域内这么做.一个局部标签的申明如下:__label__ labe ...

  4. MySQl的group by 与排序

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtoAAAFLCAIAAABnXrwfAAAgAElEQVR4nO2dT29jvZHu+WHnW8xqdl ...

  5. Ubuntu相关命令

    此贴包含自己搭建网站以及自学Ubuntu遇到的相关命令,方便以后查看,故相关帖子整理记录在此! 用户切换 当前用户切换到root用户,只需要执行sudo su即可. root用户切回user用户,只需 ...

  6. linux---进程,(rpm,yum)软件包

      3) 为新加的硬盘分区,一个主分区大小为5G,剩余空间给扩展分区,在扩展分区上划分1个逻辑分区,大小为5G fdisk -l fdisk /dev/sdb p 查看 n 新建    p  主分区 ...

  7. 【网络编程】inet_addr、inet_ntoa、inet_aton、inet_ntop和inet_pton区分

    先上一张图 1.把ip地址转化为用于网络传输的二进制数值 int inet_aton(const char *cp, struct in_addr *inp); inet_aton() 转换网络主机地 ...

  8. zset类型以及其操作

    sorted set类型 sorted sets类型以及其操作zset是set的一格升级版本,它在set的基础上增加了一格顺序属性,这一属性在添加元素的同时可以指定,每次指定后,zset会自动重新按照 ...

  9. leetCode之Median of Two Sorted Arrays

    [题目描述] There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of ...

  10. 20165202 2017-2018-2 《Java程序设计》第6周学习总结

    教材学习内容总结 Ch8 String类: 程序可以直接使用,String类不能有子类 - 构造String对象 使用String类声明并创建对象 String s = new String(&quo ...