洛谷 4525 && 洛谷 4526 【模板】自适应辛普森法
题目:https://www.luogu.org/problemnew/show/P4525
https://www.luogu.org/problemnew/show/P4526
参考:https://blog.csdn.net/VictoryCzt/article/details/80660113
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
db L,R,a,b,c,d;
db f(db x){return (c*x+d)/(a*x+b);}
db cal(db l,db r){return (f(l)+*f((l+r)/)+f(r))*(r-l)/;}
db simp(db l,db r,db eps,db ret)
{
db mid=(l+r)/,vl=cal(l,mid),vr=cal(mid,r);
if(fabs(vl+vr-ret)<=eps)return ret;
return simp(l,mid,eps/,vl)+simp(mid,r,eps/,vr);
}
int main()
{
scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&L,&R);
printf("%.6f\n",simp(L,R,1e-,cal(L,R)));
return ;
}
第二题就直接看了看题解……函数积到20就可以了,后面趋于0;不能从0开始积,因为 x 在分母。那个幂调用 pow( ) 就行了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
const db eps=1e-;
db a;
db f(db x){return pow(x,a/x-x);}
db cal(db l,db r){return (f(l)+*f((l+r)/)+f(r))*(r-l)/;}
db simp(db l,db r,db eps,db ret)
{
db mid=(l+r)/,vl=cal(l,mid),vr=cal(mid,r);
if(fabs(vl+vr-ret)<=eps)return ret;
return simp(l,mid,eps/,vl)+simp(mid,r,eps/,vr);
}
int main()
{
scanf("%lf",&a);
if(a<)puts("orz");
else printf("%.5f\n",simp(eps,,eps,cal(eps,)));
return ;
}
洛谷 4525 && 洛谷 4526 【模板】自适应辛普森法的更多相关文章
- 洛谷.4525.[模板]自适应辛普森法1(Simpson积分)
题目链接 Simpson积分公式:\[\int_a^bf(x)dx\approx\frac{b-a}{6}\left[f(a)+f(b)+4f(\frac{a+b}{2})\right]\] 推导过程 ...
- 洛谷4525 & 4526:【模板】自适应辛普森法——题解
参考:https://phqghume.github.io/2018/05/19/%E8%87%AA%E9%80%82%E5%BA%94%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%B ...
- 洛谷P4526 【模板】自适应辛普森法2
P4526 [模板]自适应辛普森法2 洛谷传送门 题目描述 计算积分 保留至小数点后5位.若积分发散,请输出"orz". 输入格式 一行,包含一个实数,为a的值 输出格式 一行,积 ...
- 洛谷P4525 【模板】自适应辛普森法1与2
洛谷P4525 [模板]自适应辛普森法1 与P4526[模板]自适应辛普森法2 P4525洛谷传送门 P4525题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛 ...
- P4526 【模板】自适应辛普森法2
P4526 [模板]自适应辛普森法2 #include <bits/stdc++.h> using namespace std; ; double a; inline double f(d ...
- P4525 【模板】自适应辛普森法1
P4525 [模板]自适应辛普森法1 #include <bits/stdc++.h> using namespace std; ; double a, b, c, d, l, r; in ...
- luogu P4525 自适应辛普森法1
LINK:自适应辛普森法1 观察题目 这个东西 凭借我们的数学知识应该是化简不了的. 可以直接认为是一个函数 求定积分直接使用辛普森就行辣. 一种写法: double a,b,c,d; double ...
- HDU - 1071 - The area - 高斯约旦消元法 - 自适应辛普森法积分
http://acm.hdu.edu.cn/showproblem.php?pid=1071 解一个给定三个点的坐标二次函数某区域的积分值. 设出方程之后高斯消元得到二次函数.然后再消元得到直线. 两 ...
- 洛谷P4525 【模板】自适应辛普森法1(simpson积分)
题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛. 输入输出格式 输入格式: 一行,包含6个实数a,b,c,d,L,R 输出格式: 一行,积分值,保留至小数点后 ...
随机推荐
- MongoDB.Driver 2.4以上版本 在.NET中的基本操作
MongoDB.Driver是操作mongo数据库的驱动,最近2.0以下版本已经从GitHub和Nuget中移除了,也就是说.NET Framework4.0不再能从官方获取到MongoDB的驱动了, ...
- SPOJ 694 && SPOJ 705 (不重复子串个数:后缀数组)
题意 给定一个字符串,求它的所有不重复子串的个数 思路 一个字符串的子串都必然是它的某个后缀的前缀.对于每一个sa[i]后缀,它的起始位置sa[i],那么它最多能得到该后缀长度个子串(n-sa[i]个 ...
- ubuntu14.04 改变系统默认Python解释器
今天刚安装了anaconda,摸索了一阵子,现做个相关记录. 虽然安装的时候,会通知你是否加入环境变量(加到.bashrc尾部),但是调用的解释器仍然是系统自带默认的Python2.7.6,我们在/r ...
- hdu 1817 Necklace of Beads(Polya定理)
Necklace of Beads Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- js上传图片&预览(filereader)
fileReader HTML5定义了FileReader作为文件API的重要成员用于读取文件,根据W3C的定义,FileReader接口提供了读取文件的方法和包含读取结果的事件模型. FileRea ...
- Java发送短信
1.接口使用介绍 发送短信肯定需要使用第三方接口,Java本身是肯定不能直接发送短信的.第三方接口有很多,这里直接找个正规靠谱一点的学习一下 这里使用了中国网建(http://sms.webchine ...
- redis的Hash类型以及其操作
hashes类型 hashes类型及操作Redis hash是一个string类型的field和value的映射表.它的添加.删除操作都是0(1)(平均).hash特别适合用于存储对象.相较于将对象的 ...
- SQL事务的四种隔离级别和MySQL多版本并发控制
SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的那些改变时可见的,那些是不可见的.低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销. ReadUncommitted( ...
- jsp页面:js方法里嵌套java代码(是操作数据库的),如果这个js 方法没被调用,当jsp页面被解析的时候,不管这个js方法有没有被调用这段java代码都会被执行?
jsp页面:js方法里嵌套java代码(是操作数据库的),如果这个js 方法没被调用,当jsp页面被解析的时候,不管这个js方法有没有被调用这段java代码都会被执行? 因为在解析时最新解析的就是JA ...
- ubuntu16扩展屏设置
new ubuntu system setting - Expansion screen settings. 1,System Settings–>Displays 1,set big scre ...