This is an interesting question from one of the lab assignments in Introduction to Computer Systems, fall 2018 at Peking University.

Problem Description

Given a 32-bit integer \(x\)(in two's complement), implement a C function that returns \(\frac{x}{6}​\) using ONLY bit manipulations(operators like ~ ! | ^ & << >> +). Your function should behave exactly as the C expression x/6.

Hint: You can use the following formula(Formula 1)

\[2 = \frac{2+1}{2} \times \frac{2^2+1}{2^2} \times \frac{2^4+1}{2^4}\times\frac{2^8+1}{2^8}...
\]

Inspiration

Since division is very slow using hardware, compilers often use optimizations to speed up division. For example, gcc will replace x/6 with x*171/1024 when x is relatively small, and implement x*171/1024 with shift left and shift right instructions. However, our function must cover all 32-bit two's complement integers, which means some other techniques are needed to make such replacement possible.

Resolution

We can change Formula 1 into the following form:

\[\frac{1}{6} = \frac{1}{8} \times \frac{2^2+1}{2^2} \times \frac{2^4+1}{2^4}\times\frac{2^8+1}{2^8}...
\]

Thus we can calculate this(Formula 2)

\[p = \frac{x}{8} \times \frac{2^2+1}{2^2} \times \frac{2^4+1}{2^4}\times\frac{2^8+1}{2^8} \times \frac{2^{16}+1}{2^{16}}
\]

Which can be implmented using a combination of shift-right and add operations(note that you must program carefully to avoid overflows). However, errors occur since expressions like x>>y return \(\lfloor x/2^y \rfloor\). We can counter the error by this(Formula 3)

\[\frac{x}{6} = p + \frac{x}{6} - p = p + \frac{1}{6}(x-6p)
\]

Since errors introduced by shift-rights will only cause \(p\) to be smaller than \(\frac{x}{6}\), we can deduce that \(x-6p > 0\). You can then approximate an upper bound of \(x-6p\), which depends on your implementation of Formula 2.

Suppose that \(x-6p < M\)(where M is small), then we can approximate \(\frac{1}{6}\) in Formula 3 using some \(X \approx \frac{1}{6}\) while keeping the equation true

\[\lfloor \frac{1}{6} (x-6p)\rfloor = \lfloor X \cdot (x-6p) \rfloor
\]

Choose a proper \(X = a/2^b\), and we are done!

/*
* divSix - calculate x / 6 without using /
* Example: divSix(6) = 1,
* divSix(2147483647) = 357913941,
* Legal ops: ~ ! | ^ & << >> +
* Max ops: 40
* Rating: 4
*/
int divSix(int x) {
int p;
int q,y,t;
x=x+(x>>31&5);
p=x>>3;
p=p+(p>>2);
p=p+(p>>4);
p=p+(p>>8);
p=p+(p>>16);
q=~p+1;
t=x+(q<<1)+(q<<2);
t=t+(t<<1)+(t<<3);
return p+(t>>6);
}

Implementing x / 6 Using Only Bit Manipulations的更多相关文章

  1. java.lang.IncompatibleClassChangeError: Implementing class的解决办法,折腾了一天总算解决了

    一,问题产生背景 git更新代码重启服务器后,问题就莫名奇妙的产生了,一看报错信息,基本看不懂,然后上百度去查,基本都是说jar包冲突,于是把矛头指向maven 二,问题的解决过程 既然确定了是mav ...

  2. Implementing Navigation with UINavigationController

    Implementing Navigation with UINavigationController Problem You would like to allow your users to mo ...

  3. Implementing SQL Server Row and Cell Level Security

    Problem I have SQL Server databases with top secret, secret and unclassified data.  How can we estab ...

  4. ios警告:Category is implementing a method which will also be implemented by its primary class 引发的相关处理

    今天在处理项目中相关警告的时候发现了很多问题,包括各种第三方库中的警告,以及各种乱七八糟的问题  先说说标题中的问题  Category is implementing a method which ...

  5. Hadoop on Mac with IntelliJ IDEA - 3 解决MRUnit - No applicable class implementing Serialization问题

    本文讲述在IntelliJ IDEA中使用MRUnit 1.0.0测试Mapper派生类时因MapDriver.withInput(final K1 key, final V1 val)的key参数被 ...

  6. Implementing the skip list data structure in java --reference

    reference:http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Map/skip-list-impl.html The link ...

  7. The JSR-133 Cookbook for Compiler Writers(an unofficial guide to implementing the new JMM)

    The JSR-133 Cookbook for Compiler Writers by Doug Lea, with help from members of the JMM mailing lis ...

  8. RH253读书笔记(6)-Lab 6 Implementing Web(HTTP) Services

    Lab 6 Implementing Web(HTTP) Services Goal: To implement a Web(HTTP) server with a virtual host and ...

  9. Implementing HTTPS Everywhere in ASP.Net MVC application.

    Implementing HTTPS Everywhere in ASP.Net MVC application. HTTPS everywhere is a common theme of the ...

随机推荐

  1. CSS3实现文本垂直排列

    最近的一个项目中要使文字垂直排列,也就是运用了CSS的writing-mode属性. writing-mode最初时ie中支持的一个属性,后来在CSS3中增添了这一新的属性,所以在ie中和其他浏览器中 ...

  2. Python学习笔记(二十)调试

    摘抄自: https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143191557 ...

  3. fastreport中文乱码问题

    fastreport的中文乱码问题,确实让人头疼,我使用的是delphi6+fastrepport4.7,在4.7版本中,主要表现在以下几种情况. 预览不乱码,保存乱码. 简体不乱码,繁体乱码. 简体 ...

  4. JavaScript:自动生成博文目录导航

    感谢 孤傲苍狼 分享了 自动生成博文目录的方法,本文仅作存档使用. 图 1:效果预览 CSS 样式 #TOCbar{ font-size:12px; text-align:left; position ...

  5. 2017 ACM暑期多校联合训练 - Team 3 1008 HDU 6063 RXD and math (莫比乌斯函数)

    题目链接 Problem Description RXD is a good mathematician. One day he wants to calculate: ∑i=1nkμ2(i)×⌊nk ...

  6. imperva配置文件的导入导出

    imperva配置文件的导入导出 Full_expimp.sh       //进行备份 1导入 2导出 输入密码后 1 全部导出 是否想导出失败的数据 默认密码是system的密码 输入导出的路径 ...

  7. CentOS 6.6下目录结构及其主要作用

    今天我们总结一下CentOS 6.6的linux的目录结构,一个系统的目录众多,这里我们主要认识一下,根目录下的主要目录,首先我们可以通过tree命令查看一次根目录下一层目录都有什么目录, 补充:不能 ...

  8. Nginx实现404页面的几种方法【转】

    一个网站项目,肯定是避免不了404页面的,通常使用Nginx作为Web服务器时,有以下集中配置方式,一起来看看. 第一种:Nginx自己的错误页面 Nginx访问一个静态的html 页面,当这个页面没 ...

  9. Linux运维常见问题解决集锦【转】

    作为linux运维,多多少少会碰见这样那样的问题或故障,用点心,平时多注意积累,水平肯定越来越高. 下面就是常见问题解决集锦:   1.shell脚本不执行 问题:某天研发某同事找我说帮他看看他写的s ...

  10. SyntaxError: Missing parentheses in call to 'print' 这个错误原因是Python版本问题

    问题 print "www.baidu.com"           Python2 print ("www.baidu.com")     Python3 出 ...