This is an interesting question from one of the lab assignments in Introduction to Computer Systems, fall 2018 at Peking University.

Problem Description

Given a 32-bit integer \(x\)(in two's complement), implement a C function that returns \(\frac{x}{6}​\) using ONLY bit manipulations(operators like ~ ! | ^ & << >> +). Your function should behave exactly as the C expression x/6.

Hint: You can use the following formula(Formula 1)

\[2 = \frac{2+1}{2} \times \frac{2^2+1}{2^2} \times \frac{2^4+1}{2^4}\times\frac{2^8+1}{2^8}...
\]

Inspiration

Since division is very slow using hardware, compilers often use optimizations to speed up division. For example, gcc will replace x/6 with x*171/1024 when x is relatively small, and implement x*171/1024 with shift left and shift right instructions. However, our function must cover all 32-bit two's complement integers, which means some other techniques are needed to make such replacement possible.

Resolution

We can change Formula 1 into the following form:

\[\frac{1}{6} = \frac{1}{8} \times \frac{2^2+1}{2^2} \times \frac{2^4+1}{2^4}\times\frac{2^8+1}{2^8}...
\]

Thus we can calculate this(Formula 2)

\[p = \frac{x}{8} \times \frac{2^2+1}{2^2} \times \frac{2^4+1}{2^4}\times\frac{2^8+1}{2^8} \times \frac{2^{16}+1}{2^{16}}
\]

Which can be implmented using a combination of shift-right and add operations(note that you must program carefully to avoid overflows). However, errors occur since expressions like x>>y return \(\lfloor x/2^y \rfloor\). We can counter the error by this(Formula 3)

\[\frac{x}{6} = p + \frac{x}{6} - p = p + \frac{1}{6}(x-6p)
\]

Since errors introduced by shift-rights will only cause \(p\) to be smaller than \(\frac{x}{6}\), we can deduce that \(x-6p > 0\). You can then approximate an upper bound of \(x-6p\), which depends on your implementation of Formula 2.

Suppose that \(x-6p < M\)(where M is small), then we can approximate \(\frac{1}{6}\) in Formula 3 using some \(X \approx \frac{1}{6}\) while keeping the equation true

\[\lfloor \frac{1}{6} (x-6p)\rfloor = \lfloor X \cdot (x-6p) \rfloor
\]

Choose a proper \(X = a/2^b\), and we are done!

/*
* divSix - calculate x / 6 without using /
* Example: divSix(6) = 1,
* divSix(2147483647) = 357913941,
* Legal ops: ~ ! | ^ & << >> +
* Max ops: 40
* Rating: 4
*/
int divSix(int x) {
int p;
int q,y,t;
x=x+(x>>31&5);
p=x>>3;
p=p+(p>>2);
p=p+(p>>4);
p=p+(p>>8);
p=p+(p>>16);
q=~p+1;
t=x+(q<<1)+(q<<2);
t=t+(t<<1)+(t<<3);
return p+(t>>6);
}

Implementing x / 6 Using Only Bit Manipulations的更多相关文章

  1. java.lang.IncompatibleClassChangeError: Implementing class的解决办法,折腾了一天总算解决了

    一,问题产生背景 git更新代码重启服务器后,问题就莫名奇妙的产生了,一看报错信息,基本看不懂,然后上百度去查,基本都是说jar包冲突,于是把矛头指向maven 二,问题的解决过程 既然确定了是mav ...

  2. Implementing Navigation with UINavigationController

    Implementing Navigation with UINavigationController Problem You would like to allow your users to mo ...

  3. Implementing SQL Server Row and Cell Level Security

    Problem I have SQL Server databases with top secret, secret and unclassified data.  How can we estab ...

  4. ios警告:Category is implementing a method which will also be implemented by its primary class 引发的相关处理

    今天在处理项目中相关警告的时候发现了很多问题,包括各种第三方库中的警告,以及各种乱七八糟的问题  先说说标题中的问题  Category is implementing a method which ...

  5. Hadoop on Mac with IntelliJ IDEA - 3 解决MRUnit - No applicable class implementing Serialization问题

    本文讲述在IntelliJ IDEA中使用MRUnit 1.0.0测试Mapper派生类时因MapDriver.withInput(final K1 key, final V1 val)的key参数被 ...

  6. Implementing the skip list data structure in java --reference

    reference:http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Map/skip-list-impl.html The link ...

  7. The JSR-133 Cookbook for Compiler Writers(an unofficial guide to implementing the new JMM)

    The JSR-133 Cookbook for Compiler Writers by Doug Lea, with help from members of the JMM mailing lis ...

  8. RH253读书笔记(6)-Lab 6 Implementing Web(HTTP) Services

    Lab 6 Implementing Web(HTTP) Services Goal: To implement a Web(HTTP) server with a virtual host and ...

  9. Implementing HTTPS Everywhere in ASP.Net MVC application.

    Implementing HTTPS Everywhere in ASP.Net MVC application. HTTPS everywhere is a common theme of the ...

随机推荐

  1. 莫队 Codeforces Round #340 (Div. 2) E

    题目大意:给你一个长度为n的序列,有m个询问,每次询问一个区间[L,R],表示这个区间内,有多少的a[i]^a[i+1].....^a[j]=k. 思路:莫队去搞就好了 我们定义pre[i]=a[1] ...

  2. Xcode变量概览-summary

    问题描述 在Xcode中断点调试时,鼠标停留在变量上,就能看到变量的信息.但对于自定义对象,通常Xcode提供的直接信息非常有限,像这样 想要了解这个对象具体的内容,需要展开左边的箭头 当开发者想要知 ...

  3. Chrome浏览器任意修改网页内容

    在Chrome浏览器按F12,打开开发者工具,切换到console选项卡: 在下面的输入行输入下面的命令回车: document.body.contentEditable="true&quo ...

  4. .ui/qrc文件自动生成.py文件

    前天PL让我们做一个从手机里手机一些数据导出到excel文件里的Tool. 让我们用python去写一个.但是我们都没有学过python..呵呵! 然后昨天看了一些文档.做ui时还需要把图片写入qrc ...

  5. C++ STL标准入门

    C++:STL标准入门汇总 第一部分:(参考百度百科) 一.STL简介 STL(Standard Template Library,标准模板库)是惠普实验室开发的一系列软件的统称.它是由Alexand ...

  6. Web安全的三个攻防姿势

    原文地址:https://segmentfault.com/a/1190000011601837 作者: zwwill_木羽 关于Web安全的问题,是一个老生常谈的问题,作为离用户最近的一层,我们大前 ...

  7. Python3 多进程

    多进程(multiprocessing)的用法和多线程(threading)类似,里面的函数也一样,start()为启动函数,join() 等待该进程运行结束,每一个进程也是由它的父进程产生 1.简单 ...

  8. django框架之中间件

    中间件简介 django 中的中间件(middleware),在django中,中间件其实就是一个类,在请求到来和结束后,django会根据自己的规则在合适的时机执行中间件中相应的方法. 在djang ...

  9. juery给所有ID属性相同的div绑定一个事件

    案例: <div id="div1">内容</div> <div id="div1">内容</div> < ...

  10. C#+TaskScheduler(定时任务)实现定时自动下载

    C# /TaskScheduler /定时任务 /定时自动下载 3410 实现原理,客户是广电,在广电服务器创建一个FTP目录,然后每天自动从卫星上自动更新节目列表, 然后功能就是要每天定点一个时间自 ...