【CodeForces】585 E. Present for Vitalik the Philatelist
【题目】E. Present for Vitalik the Philatelist
【题意】给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx),要求满足g≠1且gcd(Aa,g)=1,求方案数取模1e9+7。2<=n<=5*10^5,2<=ai<=10^7。
【算法】数论,计数问题
【题解】
考虑选择一些数字使得g≠1,容易想到枚举g值,O(n ln n)地枚举g的倍数,得到b[g]表示数列中数字为g的倍数的个数。
那么含有公因数g的区间数为2^b[g]-1,考虑容斥。
引入莫比乌斯函数μ(x),简单定义:μ(1)=1,含奇数个素因子μ(x)=-1,含偶数个素因子μ(x)=1,含重复素因子μ(x)=0。
根据容斥原理的奇加偶减,应将-μ[g]作为系数,那么总方案数就是sum=Σ-μ(g)*(2^b[g]-1),g=2~max(ai)。
接下来考虑区间和数字Aa组合,会减去gcd和Aa不互质的区间,也就是去掉公因数含有Aa的素因子的区间,这实际上也是莫比乌斯函数容斥。
所以可以套用在原来的容斥上,也就是对于数字Aa,只要将Aa的所有因子g的μ(g)视为0,计算出来的sum就是数字Aa的贡献。
那么再换个角度,含有公因数g的区间只会在数字Aa不含因子g的时候被贡献,这样的数字数实际上是n-b[g]。
所以,ans=Σ-μ(g)*(2^b[g]-1)*(n-b[g]),g=2~max(ai)。
最后,可以用自带容斥的方法避开μ的计算。最后视为对(2^b[g]-1)*(n-b[g])进行容斥(即使这样容斥没有实际含义),然后减去f[h](h=k*g),得到f[g]。ans=Σf[g]。(这种方法和埃式筛μ的本质相同)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,N=,M=1e9+;
int n,x,b[N],fx[maxn],f[N],ans=,mx=;
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&x),mx=max(mx,x),b[x]++;
fx[]=;for(int i=;i<=n;i++)fx[i]=(fx[i-]<<)%M;
for(int g=mx;g>=;g--){
x=b[g];
for(int i=g+g;i<=mx;i+=g){
x+=b[i];
f[g]=(f[g]-f[i]+M)%M;
}
if(g!=){
f[g]=(f[g]+1ll*(fx[x]-)*(n-x)%M)%M;
ans=(ans+f[g])%M;
}
}
printf("%d",ans);
return ;
}
【CodeForces】585 E. Present for Vitalik the Philatelist的更多相关文章
- CF 585 E Present for Vitalik the Philatelist
CF 585 E Present for Vitalik the Philatelist 我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ ...
- 【CF 585E】 E. Present for Vitalik the Philatelist
E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...
- 【Codeforces】Round #491 (Div. 2) 总结
[Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...
- 【Codeforces】Round #488 (Div. 2) 总结
[Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...
- CF585E. Present for Vitalik the Philatelist [容斥原理 !]
CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...
- 「CF585E」 Present for Vitalik the Philatelist
「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...
- 【CodeForces】601 D. Acyclic Organic Compounds
[题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...
- 【Codeforces】849D. Rooter's Song
[算法]模拟 [题意]http://codeforces.com/contest/849/problem/D 给定n个点从x轴或y轴的位置p时间t出发,相遇后按对方路径走,问每个数字撞到墙的位置.(还 ...
- 【CodeForces】983 E. NN country 树上倍增+二维数点
[题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...
随机推荐
- lintcode-414-两个整数相除
414-两个整数相除 将两个整数相除,要求不使用乘法.除法和 mod 运算符. 如果溢出,返回 2147483647 . 样例 给定被除数 = 100 ,除数 = 9,返回 11. 标签 二分法 思路 ...
- 给新建的kvm虚拟机创建网络接口
(一)首先必须创建网卡连接桥接口的启动脚本和停止脚本,其中脚本中的 $1:表示为虚拟机的网卡的右边接口,这两个脚本就是讲虚拟机的网卡的右边接口接在网桥上,实现桥接模型 # 1:/etc/qem ...
- 蜗牛慢慢爬 LeetCode 2. Add Two Numbers [Difficulty: Medium]
题目 You are given two non-empty linked lists representing two non-negative integers. The digits are s ...
- IDEA设置头注释—自定义author和date
IDEA设置头注释,自定义author和date的方法如下所示: 去掉波浪线的方式:鼠标选中单词 --> 点击鼠标右键 --> spelling --> save 'xxx' to ...
- CentOS7 修改分辨率
1. 修改文件: vi /boot/grub2/grub.cfg 2. 在linux16 开头的哪一行 增加 vga=0x341 修改为1024x768 3. 重启..
- windows查看端口占用指令
1.Windows平台 在windows命令行窗口下执行: 1.查看所有的端口占用情况 C:\>netstat -ano 协议 本地地址 外部地址 ...
- BZOJ4922 Karp-de-Chant Number(贪心+动态规划)
首先将每个括号序列转化为三元组(ai,bi,ci),其中ai为左括号-右括号数量,bi为前缀最小左括号-右括号数,ci为序列长度.问题变为在满足Σai=0,bi+Σaj>=0 (j<i)的 ...
- Oracle 同名字段的该行数据按照创建时间最新的隐藏其他
1.需求,表 SYS_INFO 的 NAME 字段会重复,按照 创建时间CREATE_AT 字段,取最新一条,其他隐藏 SELECT * FROM (SELECT T.*,ROW_NUMBER ...
- 【原创】【目录】实现rich editor(富文本编辑器)教程,深入理解selectiona/range操作与浏览器差异
日常工作中,接触富文本编辑的次数还是很多,特发此教程,希望可以改变富文本编辑的技术门槛较高的现状,解决这部分的坑. 前提准备,兼容获取range,统一回车行为,前期准备工作 了解document.ex ...
- 64位win10系统无法安装.Net framework3.5的两种解决方法【转】
近日有网友反映在windows10_64位系统电脑上安装Net framework3.5,操作时总失败,怎么办呢?小编下面就介绍win10 64位系统无法安装Net framework3.5的两种解决 ...