Problem Statement

Bob is going to create a graph with N nodes. The graph will be constructed in two steps. First, Bob will take N isolated vertices, label them 1 through N and color each of them using one of K colors.
Then, Bob will add some directed edges to the graph. For each i between 2 and N, inclusive, Bob may choose a single value j < i such that the nodes i and j have different colors. If he does, he will add the edge from i to j to his graph. Note
that Bob may choose not to add any edge from node i, even if there are some valid choices of j.

Two graphs are considered the same if they have the same node colors and the same set of edges.

You are given the ints N and K. Compute and return the number of different graphs Bob may construct, modulo 1,000,000,007.

Definition

  • ClassColorfulLineGraphsDiv2
  • MethodcountWays
  • Parametersint , int
  • Returnsint
  • Method signatureint countWays(int N, int K)
(be sure your method is public)

Limits

  • Time limit (s)2.000
  • Memory limit (MB)256

Constraints

  • N will be between 1 and 100, inclusive.
  • K will be between 1 and 3, inclusive.

Test cases

    • N3
    • K2

    Returns24

    The 24 different graphs are shown below. In each picture, the vertices have labels 1, 2, 3 from the left to the right.

    • N15
    • K2

    Returns789741546

    • N100
    • K1

    Returns1

    • N1
    • K3

    Returns3

    • N100
    • K3

    Returns

    492594064

  1. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    There can be at most 3 colors. So how about we solve for 3 colors, then we can adapt the solution for fewer number of colors with small tweaks.

    The problem statement describes the decision as first choosing colors and then creating the edges. But the actual rules for counting the unique setups combines the two together. Let's try to make the decision about picking a color AND an edge for each vertex.

    Imagine we've already picked colors and edges for the first i nodes,
    let's decide the i-th
    node. We can pick one of 3 colors:

    • Pick color A. Now we have to decide the edge. We can choose to connect vertex i to
      any of the previous vertices as long as they have a different color. Since this is a counting problem, let's keep in mind the counts for each color (assume 3 colors) : a, b and c.
      We cannot connect to color a,
      so there are b+c vertices
      we can connect this vertex to. There is an additional option: Don't connect the vertex at all. This gives b+c+1 options.
      Note that later vertices don't need to know what edge we picked, only the color.
    • If we pick color B: There are 1+a+c options.
    • 1+a+b options
      in case color C is picked.

    The idea is that we can just increment the count of the respective color and move on to the next i.
    Also note that i=a+b+c,
    because there were i vertices
    so the sum of all colors must be i.
    This helps us do a dynamic programming solution. Let's name f(a,b,c) to
    the number of ways to pick colors and edges for vertices starting from i=a+b+c onwards,
    assuming there were a, b and c vertices
    of each color among the first i vertices.

    • Base case: a+b+c=N.
      This means that we have already made a decision for all the vertices and there is nothing else to do. One way to do nothing: The result is 1.
    • Else there are 3 options:
      • We can pick color A.
        This means (1+b+c) options
        for the edge. The number of A vertices
        is incremented. Between picking the edge and picking the next colors/edges we have two independent decisions, so we multiply: (1+b+c)⋅f(a+1,b,c).
      • Or pick color B: (1+a+c)⋅f(a,b+1,c).
      • Or C: (1+a+b)⋅f(a,b,c+1).

      The addition of these 3 values is the result for f(a,b,c).

    Fewer colors

    When there are two colors, we can just disable the part where we pick color C.
    The state can still be (a,b,c),
    but c will
    always be 0.

    When there is one color, we can just return the number of graphs of size N that
    follow this rule OR we can do the same trick as for K=2 and
    just disable the part where we decide to use color B and C.

    Code

    The idea with that recurrence relation is that it is acyclic and the number of states is not very large O(n3).
    We can implement the recurrence using memoization or iteratively (dynamic programming) to guarantee O(n3) run
    time.

    const int MOD = 1000000007;
    
    int dp[101][101][101];
    
    int N, K;
    
    int f(int a, int b, int c)
    {
    int & res = dp[a][b][c];
    if (res == -1) {
    if (a + b + c == N) {
    // the end
    res = 1;
    } else {
    res = 0;
    long p, q;
    // color vertex with color a
    p = 1 + b + c;
    q = f(a + 1, b, c);
    res += (int)( (p * q) % MOD );
    res %= MOD; // color vertex with color b
    if (K >= 2) {
    p = 1 + a + c;
    q = f(a, b + 1, c);
    res += (int)( (p * q) % MOD );
    res %= MOD;
    } // color vertex with color c
    if (K >= 3) {
    p = 1 + a + b;
    q = f(a, b, c + 1);
    res += (int)( (p * q) % MOD );
    res %= MOD;
    }
    }
    }
    return res;
    } int countWays(int N, int K)
    {
    this->N = N;
    this->K = K;
    memset(dp, -1, sizeof(dp));
    return f(0,0,0);
    }

DP SRM 661 Div2 Hard: ColorfulLineGraphsDiv2的更多相关文章

  1. TopCoder SRM 301 Div2 Problem 1000 CorrectingParenthesization(区间DP)

    题意  给定一个长度为偶数的字符串.这个字符串由三种括号组成. 现在要把这个字符串修改为一个符合括号完全匹配的字符串,改变一个括号的代价为$1$,求最小总代价. 区间DP.令$dp[i][j]$为把子 ...

  2. Topcoder Srm 673 Div2 1000 BearPermutations2

    \(>Topcoder \space Srm \space 673 \space Div2 \space 1000 \space BearPermutations2<\) 题目大意 : 对 ...

  3. Topcoder Srm 671 Div2 1000 BearDestroysDiv2

    \(>Topcoder \space Srm \space 671 \space Div2 \space 1000 \space BearDestroysDiv2<\) 题目大意 : 有一 ...

  4. SRM 657 DIV2

    -------一直想打SRM,但是感觉Topcoder用起来太麻烦了.题目还是英文,不过没什么事干还是来打一打好了.但是刚注册的号只能打DIV2,反正我这么弱也只适合DIV2了.. T1: 题目大意: ...

  5. Topcoder srm 632 div2

    脑洞太大,简单东西就是想复杂,活该一直DIV2; A:水,基本判断A[I]<=A[I-1],ANS++; B:不知道别人怎么做的,我的是100*N*N;没办法想的太多了,忘记是连续的数列 我们枚 ...

  6. SRM 628 DIV2

    250  想想就发现规律了. 500  暴力,括号匹配. 1000 给一个f数组,如果i存在,那么f[i]也得存在,问这样的集合有多少种. 先拓扑一下,dp[i] = mul(dp[son]+1)最后 ...

  7. Topcoder SRM 683 Div2 - C

    树形Dp的题,根据题意建树. DP[i][0] 表示以i为根节点的树的包含i的时候的所有状态点数的总和 Dp[i][1] 表示包含i结点的状态数目 对于一个子节点v Dp[i][0] = (Dp[v] ...

  8. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  9. SRM 595 DIV2 1000

    数位DP的感觉,但是跟模版不是一个套路的,看的题解,代码好理解,但是确实难想. #include <cstdio> #include <cstring> #include &l ...

随机推荐

  1. ACM -- 算法小结(三)反转句子顺序与反转单词组成顺序

    hdoj 1321 反转句子字母顺序 ac 2011/10/05 #include <iostream> #include <string> #include <algo ...

  2. python开发_bisect

    现在有如下的需求: ''' 实现这样的一个功能: 对一个班级的学生的成绩做出一些评定,评定规则是: one: [0-60) -- F two: [60-70) -- D three: [70-80) ...

  3. HDU 5652 India and China Origins 二分+并查集

    India and China Origins 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5652 Description A long time ...

  4. PHP 基础函数(二)数组的内部指针

    current($arr);  返回数组中的当前单元pos($arr);  返回数组中的当前单元key($arr);  返回数组中当前单元的键名prev($arr);  将数组中的内部指针倒回一位ne ...

  5. mySql---logback日志写入数据库(mysql)配置

    如题  建议将日志级别设置为ERROR.这样可以避免存储过多的数据到数据中. 1  logback 配置文件(如下) <?xml version="1.0" encoding ...

  6. Maven安装详细图文教程

    1.安装maven前需要先安装java,并设置JAVA_HOME环境变量.(详见jdk安装教程) 2.  将apache-maven-3.0.5-bin.zip放到d:\teamwork(自定义目录) ...

  7. Ext的表格控件如何绑定

    1. XML数据源 假设我们有一个数据源是以XML的形式存在的,我们需要从里面取出数据并绑定在界面.XML的结构如下: </age>  <name>石曼迪</name&g ...

  8. python笔记16-执行cmd指令(os.system和os.popen)

    os.system 1.如果想在cmd执行python脚本,可以直接用如下指令 python [xx.py绝对路径] 比如我写了个hello.py的脚本,在脚本里面写入内容:print("h ...

  9. UBUNTU 14.04 INSTALL nsenter

    cd /tmp; curl https://www.kernel.org/pub/linux/utils/util-linux/v2.25/util-linux-2.25.tar.gz | tar - ...

  10. 关于JDBC PreparedStatement

    PreparedStatement的执行步骤: 1. 向数据库服务器发送SQL语句,数据库对SQL进行解析和优化(conn.preparedStatement(sql)) 2. 向数据库发送绑定的参数 ...