libsvm处理多分类的问题
SVM是一个二分类器,当遇到多类别的时候,一般采取如下两种策略。 a.一对多法(one-versus-rest,简称1-v-r SVMs)。训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。 b.一对一法(one-versus-one,简称1-v-1 SVMs)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本进行分类时,最后得 票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的。
SVM作为判别模型(discriminative model)中所使用的典型方法,其产生是为2分类问题设计的
svm多分类效果不佳,目前是svm研究的热点之一。libsvm用的是one- versus-one法。
简介:
.一对一法(one-versus-one,简称OVO SVMs或者pairwise)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本 进行分类时,最后得票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的。
还是假设有四类A,B,C,D 四类。在训练的时候我选择A,B; A,C; A,D; B,C; B,D;C,D所对应的向量作为训练集,然后得到六个训练结果,在测试的时候,把对应的向量分别对六个结果进行测试,然后采取投票形式,最后得到一组结 果。
投票是这样的.
A=B=C=D=0;
(A, B)-classifier 如果是A win,则A=A+1;otherwise,B=B+1;
(A,C)-classifer 如果是A win,则A=A+1;otherwise, C=C+1;
...
(C,D)-classifer 如果是A win,则C=C+1;otherwise,D=D+1;
The decision is the Max(A,B,C,D)
libsvm处理多分类的问题的更多相关文章
- 使用libsvm实现文本分类
@Hcy(黄灿奕) 文本分类,首先它是分类问题,应该对应着分类过程的两个重要的步骤,一个是使用训练数据集训练分类器,另一个就是使用测试数据集来评价分类器的分类精度.然而,作为文本分类,它还具有文本这样 ...
- LiBsvm用于多分类时训练模型参数含义
The 'svmtrain' function returns a model which can be used for futureprediction. It is a structure a ...
- Libsvm学习
本篇博客转自 http://www.cppblog.com/guijie/archive/2013/09/05/169034.html 在电脑文件夹E:\other\matlab 20 ...
- LIBSVM与LIBLINEAR
对于多分类问题以及核函数的选取,以下经验规则可以借鉴: 如果如果特征数远远大于样本数的情况下,使用线性核就可以了. 如果特征数和样本数都很大,例如文档分类,一般使用线性核, LIBLINEAR比LIB ...
- MATLAB安装libsvm工具箱的方法
支持向量机(support vector machine,SVM)是机器学习中一种流行的学习算法,在分类与回归分析中发挥着重要作用.基于SVM算法开发的工具箱有很多种,下面我们要安装的是十分受欢迎的l ...
- LibSvm流程及java代码测试
使用libSvm实现文本分类的基本过程,此文参考 使用libsvm实现文本分类 对前期数据准备及后续的分类测试进行了验证,同时对文中作者的分词组件修改成hanLP分词,对数字进行过滤,仅保留长度大于1 ...
- Libliner 中的-s 参数选择:primal 和dual
Libliner 中的-s 参数选择:primal 和dual LIBLINEAR的优化算法主要分为两大类,即求解原问题(primal problem)和对偶问题(dual problem).求解原问 ...
- 项目二:使用机器学习(SVM)进行基因预测
SVM软件包 LIBSVM -- A Library for Support Vector Machines(本项目所用到的SVM包)(目前最新版:libsvm-3.21,2016年7月8日) C-S ...
- NLP︱句子级、词语级以及句子-词语之间相似性(相关名称:文档特征、词特征、词权重)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 关于相似性以及文档特征.词特征有太多种说法.弄 ...
随机推荐
- SEL和IMP
http://www.jianshu.com/p/4a09d5ebdc2c SEL : 类成员方法的指针,但不同于C语言中的函数指针,函数指针直接保存了方法的地址,但SEL只是方法编号. IMP:一个 ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
- HTML导出Excel数据类型转换样式参考
mso-number-format:"0" NO Decimals mso-number-format:"0/.000" 3 Decimals mso-numb ...
- 《C# to IL》第二章 IL基础
如果你真的想要理解C#代码,那么最好的方法就是通过理解由C#编译器生成的代码.本章和下面两章将关注于此. 我们将用一个短小的C#程序来揭开IL的神秘面纱,并解释由编译器生成的IL代码.这样,我们就可以 ...
- JSoup 用法详解
清单 1 // 直接从字符串中输入 HTML 文档 String html = "<html><head><title> 开源中国社区 </titl ...
- JavaScript学习10:动态载入脚本和样式
我们在写Web页面的时候,须要引入非常多的JavaScript脚本文件和CSS样式文件,尤其是在站点需求量非常大的时候,脚本的需求量也随之变大,这样一来,站点的性能就会大打折扣.因此就出现了动态载入的 ...
- Skip-External-Locking – MySQL性能参数详解
MySQL的配置文件my.cnf中默认存在一行skip-external-locking的参数,即“跳过外部锁定”.根据MySQL开发网站的官方解释,External-locking用于多进程条件下为 ...
- 【转载】利用Matlab制作钟表
静态时钟 hObject=figure; set(hObject,'NumberTitle','off'); set(hObject,'MenuBar','none'); set(hObject,'v ...
- 使用 JMeter 完成常用的压力测试
国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html内部邀请码:C8E245J (不写邀请码,没有现金送)国内私 ...
- DCI:The DCI Architecture: A New Vision of Object-Oriented Programming
SummaryObject-oriented programming was supposed to unify the perspectives of the programmer and the ...