前言

Batch Normalization是由google提出的一种训练优化方法。参考论文:Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift 
个人觉得BN层的作用是加快网络学习速率,论文中提及其它的优点都是这个优点的副产品。 
网上对BN解释详细的不多,大多从原理上解释,没有说出实际使用的过程,这里从what, why, how三个角度去解释BN。

What is BN

Normalization是数据标准化(归一化,规范化),Batch 可以理解为批量,加起来就是批量标准化。 
先说Batch是怎么确定的。在CNN中,Batch就是训练网络所设定的图片数量batch_size。

Normalization过程,引用论文中的解释: 
 
输入:输入数据x1..xm(这些数据是准备进入激活函数的数据) 
计算过程中可以看到, 
1.求数据均值; 
2.求数据方差; 
3.数据进行标准化(个人认为称作正态化也可以) 
4.训练参数γ,β 
5.输出y通过γ与β的线性变换得到新的值 
在正向传播的时候,通过可学习的γ与β参数求出新的分布值

在反向传播的时候,通过链式求导方式,求出γ与β以及相关权值 

Why is BN

解决的问题是梯度消失与梯度爆炸。 
关于梯度消失,以sigmoid函数为例子,sigmoid函数使得输出在[0,1]之间。 
 
事实上x到了一定大小,经过sigmoid函数的输出范围就很小了,参考下图 
 
如果输入很大,其对应的斜率就很小,我们知道,其斜率(梯度)在反向传播中是权值学习速率。所以就会出现如下的问题, 
 
在深度网络中,如果网络的激活输出很大,其梯度就很小,学习速率就很慢。假设每层学习梯度都小于最大值0.25,网络有n层,因为链式求导的原因,第一层的梯度小于0.25的n次方,所以学习速率就慢,对于最后一层只需对自身求导1次,梯度就大,学习速率就快。 
这会造成的影响是在一个很大的深度网络中,浅层基本不学习,权值变化小,后面几层一直在学习,结果就是,后面几层基本可以表示整个网络,失去了深度的意义。

关于梯度爆炸,根据链式求导法, 
第一层偏移量的梯度=激活层斜率1x权值1x激活层斜率2x…激活层斜率(n-1)x权值(n-1)x激活层斜率n 
假如激活层斜率均为最大值0.25,所有层的权值为100,这样梯度就会指数增加。

How to use BN

先解释一下对于图片卷积是如何使用BN层。 
 
这是文章卷积神经网络CNN(1)中5x5的图片通过valid卷积得到的3x3特征图(粉红色)。特征图里的值,作为BN的输入,也就是这9个数值通过BN计算并保存γ与β,通过γ与β使得输出与输入不变。假设输入的batch_size为m,那就有m*9个数值,计算这m*9个数据的γ与β并保存。正向传播过程如上述,对于反向传播就是根据求得的γ与β计算梯度。 
这里需要着重说明2个细节: 
1.网络训练中以batch_size为最小单位不断迭代,很显然,新的batch_size进入网络,机会有新的γ与β,因此,在BN层中,有总图片数/batch_size组γ与β被保存下来。 
2.图像卷积的过程中,通常是使用多个卷积核,得到多张特征图,对于多个的卷积核需要保存多个的γ与β。

结合论文中给出的使用过程进行解释 
 
输入:待进入激活函数的变量 
输出: 
1.对于K维的输入,假设每一维包含m个变量,所以需要K个循环。每个循环中按照上面所介绍的方法计算γ与β。这里的K维,在卷积网络中可以看作是卷积核个数,如网络中第n层有64个卷积核,就需要计算64次。 
需要注意,在正向传播时,会使用γ与β使得BN层输出与输入一样。 
2.在反向传播时利用γ与β求得梯度从而改变训练权值(变量)。 
3.通过不断迭代直到训练结束,求得关于不同层的γ与β。如网络有n个BN层,每层根据batch_size决定有多少个变量,设定为m,这里的mini-batcherB指的是特征图大小*batch_size,即m=特征图大小*batch_size,因此,对于batch_size为1,这里的m就是每层特征图的大小。 
4.不断遍历训练集中的图片,取出每个batch_size中的γ与β,最后统计每层BN的γ与β各自的和除以图片数量得到平均直,并对其做无偏估计直作为每一层的E[x]与Var[x]。 
5.在预测的正向传播时,对测试数据求取γ与β,并使用该层的E[x]与Var[x],通过图中11:所表示的公式计算BN层输出。 
注意,在预测时,BN层的输出已经被改变,所以BN层在预测的作用体现在此处

至此,BN层的原理与使用过程就解释完毕,给出的解释都是本人觉得值得注意或这不容易了解的部分,如有錯漏,请指正。

【卷积神经网络】对BN层的解释的更多相关文章

  1. 【python实现卷积神经网络】padding2D层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. 【python实现卷积神经网络】Flatten层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  3. 【python实现卷积神经网络】Dropout层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. 【python实现卷积神经网络】激活层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  5. BN层

    论文名字:Batch Normalization: Accelerating Deep Network Training by  Reducing Internal Covariate Shift 论 ...

  6. 神经网络:卷积神经网络CNN

    一.前言 这篇卷积神经网络是前面介绍的多层神经网络的进一步深入,它将深度学习的思想引入到了神经网络当中,通过卷积运算来由浅入深的提取图像的不同层次的特征,而利用神经网络的训练过程让整个网络自动调节卷积 ...

  7. 卷积神经网络(CNN)新手指南 1

    http://blog.csdn.net/real_myth/article/details/52273930 卷积神经网络(CNN)新手指南 2016-07-29 18:22 Blake 1条评论 ...

  8. 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...

  9. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

随机推荐

  1. SpringBoot 与缓存

    1. JSR107 Java Caching 定义了5个核心接口: CachingProvider:定义了创建,配置,获取,管理和控制多个CacheManager; CacheManager:定义了创 ...

  2. LeetCode_Compare Version Numbers

    题目: Compare two version numbers version1 and version2. If version1 > version2 return 1, if versio ...

  3. 转载:futex同步机制详解

    在编译2.6内核的时候,你会在编译选项中看到[*] Enable futex support这一项,上网查,有的资料会告诉你"不选这个内核不一定能正确的运行使用glibc的程序", ...

  4. c# 方法传递参数

    一.参数的使用方法: 1.值参数(Value Parameter ) 格式:方法名称(参数类型 参数名称[,参数类型 参数名称]) 2.引用参数(Reference Parameter ) 格式:方法 ...

  5. ffmpeg,rtmpdump和nginx rtmp实现录屏,直播和录制

    公司最近在做视频直播的项目,我这里分配到对直播的视频进行录制,录制的方式是通过rtmpdump对rtmp的视频流进行录制 前置的知识 ffmpeg: 用于实现把录屏工具发出的视频和音频流,转换成我们需 ...

  6. Spring第六弹—-依赖注入之使用构造器注入与使用属性setter方法注入

    所谓依赖注入就是指:在运行期,由外部容器动态地将依赖对象注入到组件中. 使用构造器注入   1 2 3 4 <constructor-arg index=“0” type=“java.lang. ...

  7. PAT 1133 Splitting A Linked List[链表][简单]

    1133 Splitting A Linked List(25 分) Given a singly linked list, you are supposed to rearrange its ele ...

  8. Oracle数据库查找持有锁的SQL语句,而不是请求锁的SQL语句(原创)

    Oracle数据库查找持有锁的SQL语句,而不是请求锁的SQL语句 查找活动的事务以及活动事务关联的会话信息 select s.sid 会话ID, s.serial# 会话序列号, s.usernam ...

  9. 20165324《Java程序设计》第七周

    20165324<Java程序设计>第七周 教材学习内容总结 第11章 JDBC与MySOLz数据库 MySQL数据库管理系统,简称MySQL. 使用步骤: 启动MySQL数据库服务 器建 ...

  10. Django:学习笔记(9)——用户身份认证

    Django:学习笔记(9)——用户身份认证 User