Deep Learning入门
今天在看电影的过程中我忽然想起来几件特别郁闷的事,我居然忘了上周三晚上的计算机接口的实验课!然后我又想起来我又忘了上周六晚上的就业指导!
然后一阵恐惧与责备瞬间涌了上来。
这事要是在以前我绝对会释然的,可是重要的事说三遍~我要保研,我要保研,我要保研!我怎么能这么大意啊!!!!!!!!!!
哎,郁闷,还是说说代码吧。
心情不好转移一下
郁闷的分割线
学习此内容是建立在文本分类的MaxEntSentiment最大熵分类的基础上的,代码可以在github下载
稀疏特征构成单层神经网络
什么是稀疏特征
所谓稀疏特征就是说,在整个特征库V中选中的特征是很少的(如果说选中的特征用1标记,没选中的特征用0标记)
那么在整个特征向量中(0的个数大于1的个数)
比如说一个特征库中有A,B,C,D,E,F,G,H,I。。。。Z 26个特征 现在有一个句子中有A B C D这个四个特征 ,那么就表示为(1,1,1,1,0,0,0,0,0,0,0,0….)
可以参考:https://www.zhihu.com/question/31951092单层神经网络
单层神经网络就是只有一个隐层
现在我们的目的是来判断一个句子是正向的还是负向的第一步:
就是去特征库中找到想要的特征
比如:(就是含有特征A,B,C,D的这个句子)x:(1,1,1,1,0,0,0,0,0,0,0,0….)第二步:
构建一个26*2(第一个参数是你有多少特征,第二个参数是你要分几类。前面的例子是由26个特征,要分为2类,正向1,负向0)的特征库,每一行表示这个特征在正向和负向上的“贡献”,就是这个特征有多大可能是正向的,多大可能是负向的。
当然,我们不会手工的对这26个特征进行正向和负向的赋值。因为深度学习是要学习的吗。所以最开始给他们赋值为-1到1的随机数第三步:
V与x这两个矩阵相乘,x是1*26的,V是2*62的 结果就是1*2的矩阵。
也可以换种角度思考:对所选中的特征在0那一列的数值加一起,然后在1那一列的数值在一起。最后也是1*2的矩阵。有人说,这不是废话么。。。但是在编程的时候就不用乘了,直接加就可了,提高了速度??代码中就是这么定义的V,这么定义的目的就是在前向计算的时候是把这个矩阵出现的特征0, 1向分别加一起而不是v乘x
再提一句什么是前向计算:ComputeForward
v*x就是前向计算啦~~~ 我觉得这个名字就是为了一会要出现的反向计算而起的名字。这个12的矩阵就是最后的输出y ()
第四步:
这个1*2的矩阵我们还要变个形下,对她进行归一化也就是softmax。
可以这么想,想要统计理科的分数和100分有多大差距,你是不是要把你理科成绩加一起然后再除以科目数吧,这样你才能和100分对比。这里的softmax是不是类似这个功能。第五步:
和真实情况对比求差距
。产生差距的原因可定是每一个特征对正向和负向的赋值不准确。
然后反过来改v。这个就叫ComputeBackward。反向计算
然后再继续回到第三步。。。反复。。。。
这里的e1 e2神马的 就是所选择的特征,这个图中是选择了7个特征。然后在V中把它们正向和负向分别加一起(y是1*2的矩阵)与0,1做对比。这里的隐层就是图片中灰色的V
这个是学长做的图片,我就直接拿来了,我有空会自己做一个我自己觉得好理解的图片的。
单层的就说完了
下一篇讲多层的,和它几乎一样。我会尽量更详细的用图来解释,以及对这里有些一带而过的ComputeBackward进一步说明
22点45了。哎~早点睡觉明天早点起来去占个座,不能再继续这样不积极了。连课都会忘了,也不认真听课!大三下加油!
郁闷的结束线
坚持是一种伟大的力量,可以改变一切
Deep Learning入门的更多相关文章
- 大牛deep learning入门教程
雷锋网(搜索"雷锋网"公众号关注)按:本文由Zouxy责编,全面介绍了深度学习的发展历史及其在各个领域的应用,并解释了深度学习的基本思想,深度与浅度学习的区别和深度学习与神经网络之 ...
- Deep Learning入门视频(下)之关于《感受神经网络》两节中的代码解释
代码1如下: #深度学习入门课程之感受神经网络(上)代码解释: import numpy as np import matplotlib.pyplot as plt #matplotlib是一个库,p ...
- Deep Learning入门视频(上)_一层/两层神经网络code
关于在51CTO上的深度学习入门课程视频(9)中的code进行解释与总结: (1)单层神经网络: #coding:cp936 #建立单层神经网络,训练四个样本, import numpy as np ...
- deep learning入门:感知机
权重和偏置 import numpy as np # 求x1 and x2 def AND(x1, x2): x = np.array([x1, x2]) w = np.array([0.5, 0.5 ...
- (转)深度学习(Deep Learning, DL)的相关资料总结
from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革 ...
- 应该如何入门deep learning呢?从UFLDL开始!
抱歉,大家,这里不是要分享如何学习deep learning,而是想要记录自己学习deep learning的小历程,算是给自己的一点小动力吧,希望各位业内前辈能够多多指教! 看到有网友提到,Andr ...
- 转:UFLDL_Tutorial 笔记(deep learning绝佳的入门资料 )
http://blog.csdn.net/dinosoft/article/details/50103503 推荐一个deep learning绝佳的入门资料 * UFLDL(Unsupervised ...
- TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)【转】
本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把 ...
- (转)Deep Learning深度学习相关入门文章汇摘
from:http://farmingyard.diandian.com/post/2013-04-07/40049536511 来源:十一城 http://elevencitys.com/?p=18 ...
随机推荐
- d3.js 之SVG:矢量化图形绘制
SVG Scalable Vector Graphics 是一个成熟的W3C标准,被设计用来在web和移动平台 上展示可交互的图形.和HTML类似,SVG也支持CSS和JavaScript.尽管可以使 ...
- 14.Iterate a Cursor in the mongo Shell-官方文档摘录
1 迭代游标 } ); while (myCursor.hasNext()) { print(tojson(myCursor.next())); } } ); myCursor.forEach(pri ...
- centos7手动编译安装Libvirt常见问题
由于功能需要,体验了手动编译安装Libvrt,还是碰到了不少问题,这里总结如下仅限于centos7: 1.configure: error: You must install the pciacces ...
- python web 程序的9种部署方式
python有很多web 开发框架,代码写完了,部署上线是个大事,通常来说,web应用一般是三层结构 Web Server====> Application=====> DB S ...
- Spark2.0机器学习系列之8:多类分类问题(方法归总和分类结果评估)
一对多(One-vs-Rest classifier) 将只能用于二分问题的分类(如Logistic回归.SVM)方法扩展到多类. 参考:http://www.cnblogs.com/CheeseZH ...
- 使用yeoman起一个新项目(个人练习记录,勿喷!)
1.首先安装yeoman:npm install -g yo2.yeoman需要generator来进行操作所以需要安装generator模块:npm install -g generator-web ...
- (转)库函数之 API
API是库函数,这些库函数操作系统提供开发人员开发应用程序使用的. API函数内部应该是C C++ 或者汇编语言实现的. 如果想在程序里面使用API函数 需要包含头文件 Windows.h. ...
- 工作笔记——web字体格式转换
转载自:http://blog.csdn.net/xiaolongtotop/article/details/8316554 目前,文字信息仍是网站最主要的内容,随着CSS3技术的不断成熟,Web字体 ...
- WordPress文章自动提取tag并添加链接
我们在编写文章时,经常需要添加一些标签关键词的链接,这样不仅可以优化我们的内链,对用户来说也可以参照相关的文章,如果对文章的关键字进行手动添加链接,那样对我们来说太麻烦了,而且在标签关键词很多的情况下 ...
- 机器学习与R语言:kNN
#---------------------------------------- # 功能描述:演示kNN建模过程 # 数据集:威斯康星乳腺癌诊断 # #---------------------- ...


