Jury Compromise
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions:32355   Accepted:8722   Special Judge

Description

In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of members of the general public. Every time a trial is set to begin, a jury has to be selected, which is done as follows. First, several people are drawn randomly from the public. For each person in this pool, defence and prosecution assign a grade from 0 to 20 indicating their preference for this person. 0 means total dislike, 20 on the other hand means that this person is considered ideally suited for the jury. 
Based on the grades of the two parties, the judge selects the jury. In order to ensure a fair trial, the tendencies of the jury to favour either defence or prosecution should be as balanced as possible. The jury therefore has to be chosen in a way that is satisfactory to both parties. 
We will now make this more precise: given a pool of n potential jurors and two values di (the defence's value) and pi (the prosecution's value) for each potential juror i, you are to select a jury of m persons. If J is a subset of {1,..., n} with m elements, then D(J ) = sum(dk) k belong to J 
and P(J) = sum(pk) k belong to J are the total values of this jury for defence and prosecution. 
For an optimal jury J , the value |D(J) - P(J)| must be minimal. If there are several jurys with minimal |D(J) - P(J)|, one which maximizes D(J) + P(J) should be selected since the jury should be as ideal as possible for both parties. 
You are to write a program that implements this jury selection process and chooses an optimal jury given a set of candidates.

Input

The input file contains several jury selection rounds. Each round starts with a line containing two integers n and m. n is the number of candidates and m the number of jury members. 
These values will satisfy 1<=n<=200, 1<=m<=20 and of course m<=n. The following n lines contain the two integers pi and di for i = 1,...,n. A blank line separates each round from the next. 
The file ends with a round that has n = m = 0.

Output

For each round output a line containing the number of the jury selection round ('Jury #1', 'Jury #2', etc.). 
On the next line print the values D(J ) and P (J ) of your jury as shown below and on another line print the numbers of the m chosen candidates in ascending order. Output a blank before each individual candidate number. 
Output an empty line after each test case.

Sample Input

4 2
1 2
2 3
4 1
6 2
0 0

Sample Output

Jury #1
Best jury has value 6 for prosecution and value 4 for defence:
2 3

Hint

If your solution is based on an inefficient algorithm, it may not execute in the allotted time.

Source

题意:

从n个候选人中选出m个,每个人有两个分数,分别是辩方和控方打出的。现在希望选出的这m个人,他们的辩方分数和与控方分数和之差的绝对值最小,当有多种情况时选择两个分数和最大的一种。还要输出方案。

思路:

感觉略难。

我们可以把n个候选人当做是n个物品,每个人的人数作为一维体积,装满容积为m的背包。每个候选人辩、控得分差作为体积之一,辩、控双方的得分和作为价值。dp[j][k]表示取j个候选人,使其辩控差为k的所有方案中,辩控和最大的那个方案。并且,我们还规定,如果没法选j 个人,使其辩控差为k,那么f(j, k)的值就为-1,也称方案f(j, k)不可行。本题是要求选出m 个人,那么,如果对k 的所有可能的取值,求出了所有的f(m, k) (-20×m≤ k ≤ 20×m),那么陪审团方案自然就很容易找到了。可行方案f(j-1, x)能演化成方案f(j, k)的必要条件是:存在某个候选人i,i 在方案f(j-1, x)中没有被选上,且x+V(i) = k。在所有满足该必要条件的f(j-1, x)中,选出 f(j-1, x) + S(i) 的值最大的那个,那么方案f(j-1, x)再加上候选人i,就演变成了方案 f(j, k)。这中间需要将一个方案都选了哪些人都记录下来。不妨将方案f(j, k)中最后选的那个候选人的编号,记在二维数组的元素path[j][k]中。那么方案f(j, k)的倒数第二个人选的编号,就是path[j-1][k-V[path[j][k]]。假定最后算出了解方案的辩控差是k,那么从path[m][k]出发,就能顺藤摸瓜一步步求出所有被选中的候选人。

 //#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n, m;
const int maxn = ;
const int maxm = ;
int p[], d[], ans[];
int dp[][], path[][]; int main()
{
int cas = ;
while(scanf("%d %d", &n, &m) != EOF && (n || m)){ for(int i = ; i <= n; i++){
scanf("%d%d", &p[i], &d[i]);
} memset(dp, -, sizeof(dp));
memset(path, , sizeof(path));
dp[][ * m] = ;
for(int j = ; j < m; j++){//j表示选出的人的数目
for(int k = ; k <= m * ; k++){
if(dp[j][k] >= ){//方案(j,k)可行
for(int i = ; i <= n; i++){//找i是否出现过并且是否值得更新
int t1, t2;
if(dp[j][k] + p[i] + d[i] > dp[j + ][k + p[i] - d[i]]){
t1 = j; t2 = k;
while(path[t1][t2] != i && t1 > ){
t2 -= p[path[t1][t2]] - d[path[t1][t2]];
t1--;
}
if(t1 == ){
dp[j + ][k + p[i] - d[i]] = dp[j][k] + p[i] + d[i];
path[j + ][k + p[i] - d[i]] = i;
}
}
}
}
}
} int x = m * , y = ;
while(dp[m][x + y] < && dp[m][x - y] < )y++;
int k;
if(dp[m][x + y] > dp[m][x - y]){
k = x + y;
}
else{
k = x - y;
} printf("Jury #%d\n",cas++);
printf("Best jury has value %d for prosecution and value %d for defence:\n",(k-m*+dp[m][k])/,(dp[m][k]-k+m*)/);
for(int i=;i<=m;i++)
{
ans[i]=path[m-i+][k];
k-=p[ans[i]]-d[ans[i]];
}
sort(ans + , ans + m + );
for(int i=;i<=m;i++)
printf(" %d",ans[i]);
printf("\n\n");
}
return ;
}

poj1015 Jury Compromise【背包】的更多相关文章

  1. poj1015 Jury Compromise[背包]

    每一件物品有两个属性.朴素思想是把这两种属性都设计到状态里,但空间爆炸.又因为这两个属性相互间存在制约关系(差的绝对值最小),不妨把答案设计入状态中,设$f[i][j]$选$i$个人,两者之差$j$. ...

  2. POJ-1015 Jury Compromise(dp|01背包)

    题目: In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting ...

  3. $POJ1015\ Jury\ Compromise\ Dp$/背包

    洛谷传送门 $Sol$ 这是一道具有多个“体积维度”的$0/1$背包问题. 把$N$个候选人看做$N$个物品,那么每个物品有如下三种体积: 1.“人数”,每个候选人的“人数”都是$1$,最终要填满容积 ...

  4. [POJ1015]Jury Compromise

    题目大意:要求你从n个人中选出m个,每个人有两个值p[i],D[i],要求选出的人p总和与D总和的差值最小.若有相同解,则输出p总+D总最大的方案. 动态规划. 一直在想到底是n枚举外面还是m放外面, ...

  5. poj 1015 Jury Compromise(背包变形dp)

    In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...

  6. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  7. poj 1015 Jury Compromise(背包+方案输出)

    \(Jury Compromise\) \(solution:\) 这道题很有意思,它的状态设得很...奇怪.但是它的数据范围实在是太暴露了.虽然当时还是想了好久好久,出题人设了几个限制(首先要两个的 ...

  8. HDU 1015 Jury Compromise 01背包

    题目链接: http://poj.org/problem?id=1015 Jury Compromise Time Limit: 1000MSMemory Limit: 65536K 问题描述 In ...

  9. POJ 1015 Jury Compromise(双塔dp)

    Jury Compromise Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33737   Accepted: 9109 ...

随机推荐

  1. iOS图片上传及处理

    从摄像头或者是从相冊中读取图片.须要通过UIImagePickerController类来实现,在使用UIImagePickerController时,须要是实现以下两个协议 <UINaviga ...

  2. JS自定义去除字符串左右两边的指定字符

    function ltrim(str,char){ var pos = str.indexOf(char); var sonstr = str.substr(pos+1); return sonstr ...

  3. django admin 或xadmin 错误 总结

    django管理界面admin搜索报错:TypeError: Related Field got invalid lookup: icontains 报错 TypeError: Related Fie ...

  4. ASP.NET基础(一)

    ExecuteNonQuery()的用法 下面我们将详细讲解如何在Page_Load()中对数据库的增加.删除.修改,最后我们再来总结一下ExecuteNonQuery(),ExecuteScalar ...

  5. poj3067 Japan(树状数组)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:id=3067">http://poj.org/problem? id=3067 Descri ...

  6. 转:PHP获取浏览器类型及版本号

    function getBrowser(){ $agent=$_SERVER["HTTP_USER_AGENT"]; if(strpos($agent,'MSIE')!==fals ...

  7. 亿级日PV的魅族云同步的核心协议与架构实践(转)

    云同步的业务场景 这是魅族云同步的演进,第一张是M8.M9,然后到后面的是MX系统,M9再往后发展,我们的界面可以看到基本上是没有什么变化的,但本质发生了很大的变化,我们经过了一些协议优化,发展到今天 ...

  8. HTTP Content-Disposition Explanation [ from MDN ]

    在常规的HTTP应答中,Content-Disposition 消息头指示回复的内容该以何种形式展示,是以内联的形式(即网页或者页面的一部分),还是以附件的形式下载并保存到本地. 在multipart ...

  9. python的zipfile实现文件目录解压缩

    主要是 解决了压缩目录下 空文件夹 的压缩 和 解压缩问题 压缩文件夹的函数: # coding:utf- import os import zipfile def zipdir(dirToZip,s ...

  10. kettle的日志

    http://blog.sina.com.cn/s/blog_76a8411a01010u2h.html