网络流24题之最长k可重区间集问题
对于每个点向后一个点连流量为k费用为0的边
对每一区间连l到r流量为1费用为r-l的边
然后最小费用最大流,输出取反
一开始写的r-l+1错了半天。。。
By:大奕哥
#include<bits/stdc++.h>
using namespace std;
const int N=,inf=1e9;
int head[N],d[N],f[N],l[N],r[N],a[N],s=1e9,t,n,k,cnt=-,cost;
bool v[N];
struct node{
int to,nex,f,w,c;
}e[];
void add(int x,int y,int w,int c)
{
e[++cnt].to=y;e[cnt].w=w;e[cnt].f=x;e[cnt].c=c;e[cnt].nex=head[x];head[x]=cnt;
e[++cnt].to=x;e[cnt].w=;e[cnt].f=y;e[cnt].c=-c;e[cnt].nex=head[y];head[y]=cnt;
}
queue<int>q;
bool spfa()
{
memset(f,-,sizeof(f));
memset(d,0x3f,sizeof(d));
memset(v,,sizeof(v));
d[s]=;v[s]=;q.push(s);
while(!q.empty())
{
int x=q.front();q.pop();v[x]=;
for(int i=head[x];i!=-;i=e[i].nex)
{
int y=e[i].to;
if(d[y]<=d[x]+e[i].c||!e[i].w)continue;
d[y]=d[x]+e[i].c;f[y]=i;
if(!v[y])q.push(y),v[y]=;
}
}
if(d[t]>1e9)return ;
int flow=inf;
for(int i=f[t];i!=-;i=f[e[i].f])
flow=min(flow,e[i].w);
for(int i=f[t];i!=-;i=f[e[i].f])
e[i].w-=flow,e[i^].w+=flow,cost+=e[i].c*flow;
return ;
}
int main()
{
scanf("%d%d",&n,&k);int num=;
memset(head,-,sizeof(head));
for(int i=;i<=n;++i)
{
scanf("%d%d",&l[i],&r[i]);
a[++num]=l[i];a[++num]=r[i];
}
sort(a+,a++num);
num=unique(a+,a++num)-a-;
for(int i=;i<=n;++i)
{
int x=r[i]-l[i];
l[i]=lower_bound(a+,a++num,l[i])-a;
r[i]=lower_bound(a+,a++num,r[i])-a;
add(l[i],r[i],,-x);
}
for(int i=;i<num;++i)
add(i,i+,k,);t=num+;
add(num,t,k,);
add(,,k,);s=;
while(spfa());
printf("%d\n",-cost);
return ;
}
网络流24题之最长k可重区间集问题的更多相关文章
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
- 网络流24题:最长 k 可重区间集问题题解
最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...
- 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
- 「网络流 24 题」最长 k 可重区间集
给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T ...
- 【PowerOJ1756&网络流24题】最长k可重区间集问题(费用流)
题意: 思路: [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立 ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
随机推荐
- 《JavaScript 实战》:JavaScript 实现图片切割效果
很久之前就在一个网站的截取相片的功能中看到这个效果,也叫图片裁剪.图片剪切(设置一下也可以做出放大镜等类似的效果).当时觉得很神奇,碍于水平有限,没做出来.前些日子突然想做一个透镜效果,就突然想到了这 ...
- 【BZOJ】1901: Zju2112 Dynamic Rankings
[题意]带修改的查询区间第k小 [算法]树状数组套可持久化线段树 [题解]对于树状数组上的每个节点,维护可持久化权值线段树(节点为权值),从而达到查询前缀和的目的. 对于每次修改,在待修改线段树基础上 ...
- MyBatis数据库字段和实体对象属性名不一致的解决方案
数据库和对象的属性名不一致是很常见的问题,这个时候依从表字段到对象属性名的按名称匹配映射已经搞不定这个了,下面是几种解决方案. 1. 开启驼峰转换 如果数据库中的字段名与对象只是简单的不一致的话,比如 ...
- git创建新分支推送到远程
1.创建本地分支 git branch 分支名,例如:git branch 2.0.1.20120806 注:2.0.1.20120806是分支名称,可以随便定义. 2.切换本地分支 git ch ...
- 使用Bash时的几点总结
作为一个天天与Linux打交道,并以此为生的Linux运维工程师,最常用的工具性语言恐怕就是shell了, 而对于大多数的Linux和一些类Unix而言,其默认的shell就是Bash.使用Bash一 ...
- java校验身份证号码
/** * 18位身份证校验,粗略的校验 * @author lyl * @param idCard * @return */ public static boolean is18ByteIdCard ...
- layui实现类似于bootstrap的模态框功能
以前习惯了bootstrap的模态框,突然换了layui,想的用layui实现类似于bootstrap的模态框功能. 用到了layui的layer模块,例如: <!DOCTYPE html> ...
- Python3 re模块正则表达式中的re.S
在Python的正则表达式中,有一个参数为re.S.它表示"."(不包含外侧双引号,下同)的作用扩展到整个字符串,包括"\n".看如下代码: import re ...
- Deep Learning基础--各个损失函数的总结与比较
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验 ...
- Android 开发笔记(二)菜单设计
菜单设计一 // 创建菜单 public boolean onCreateOptionsMenu(Menu menu) { menu.add(0, 0, 0, "关于"); men ...