其实这个用的是Mobius反演的第二种形式

F(d) = (n div d) * (m div d)

f(d) = [ gcd(i,j)=d ] (i in [1,a], j in [1,b])

 /**************************************************************
Problem: 1101
User: idy002
Language: C++
Result: Accepted
Time:6764 ms
Memory:1688 kb
****************************************************************/ #include <cstdio>
#include <iostream>
using namespace std; typedef long long dnt; int prm[], isnot[], mu[], ptot; void init( int n ) {
mu[] = ;
for( int i=; i<=n; i++ ) {
if( !isnot[i] ) {
prm[++ptot] = i;
mu[i] = -;
}
for( int j=; j<=ptot && i*prm[j]<=n; j++ ) {
isnot[i*prm[j]] = true;
if( i%prm[j]== ) {
mu[i*prm[j]] = ;
break;
}
mu[i*prm[j]] = -mu[i];
}
}
for( int i=; i<=n; i++ )
mu[i] += mu[i-];
}
dnt calc( int n, int m, int k ) {
dnt rt = ;
if( n>m ) swap(n,m);
n/=k;
m/=k;
for( int d=; d<=n; d++ ) {
int dd=min(n/(n/d),m/(m/d));
rt += (dnt)(n/d)*(m/d)*(mu[dd]-mu[d-]);
d=dd;
}
return rt;
}
int main() {
init();
int T;
scanf( "%d", &T );
while( T-- ) {
int n, m, k;
scanf( "%d%d%d", &n, &m, &k );
printf( "%lld\n", calc(n,m,k) );
}
}

bzoj 1101的更多相关文章

  1. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  2. BZOJ 1101: [POI2007]Zap

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status] ...

  3. BZOJ 1101 Zap(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...

  4. BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  5. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  6. bzoj 1101 [POI2007]Zap——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 #include<cstdio> #include<cstring& ...

  7. BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...

  8. bzoj 1101 zap 莫比乌斯

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给 ...

  9. bzoj 1101 Zap —— 莫比乌斯反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...

随机推荐

  1. Android 搭建Linux系统

    本文精心从网上搜罗出相关资料并整理,含有大量外部链接 安卓手机上安装linux大致分为两种方案 一.使用Linux Deploy 二.使用 Linux on Android 本文对Linux Depl ...

  2. c语言学习笔记.指针.

    指针: 一个变量,其值为另一个变量的地址,即,内存位置的直接地址. 声明: int *ptr; /* 一个整型的指针,指针指向的类型是整型 */ double *ptr; /* 一个 double 型 ...

  3. JS设计模式——2.初识接口

    什么是接口 接口提供了一种用以说明一个对象应该具有哪些方法的手段. 接口之利 1.接口具有自我描述性从而促进代码的重用 2.接口有助于稳定不同中的类之间的通信方式 3.测试和调试也变得更轻松 接口之弊 ...

  4. defer用途

    package main /* defer :程序退出时执行,先进后执行 defer庸碌: 1.关闭文件句柄 2.锁资源释放 3.数据库连接释放 */ import ( "fmt" ...

  5. LDA线性判别分析

    LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的 ...

  6. elasticsearch集群介绍及优化【转】

    elasticsearch用于构建高可用和可扩展的系统.扩展的方式可以是购买更好的服务器(纵向扩展)或者购买更多的服务器(横向扩展),Elasticsearch能从更强大的硬件中获得更好的性能,但是纵 ...

  7. acm专题---键树

    题目来源:http://hihocoder.com/problemset/problem/1014?sid=982973 #1014 : Trie树 时间限制:10000ms 单点时限:1000ms ...

  8. C#串口serialPort操作

    现在大多数硬件设备均采用串口技术与计算机相连,因此串口的应用程序开发越来越普遍.例如,在计算机没有安装网卡的情况下,将本机上的一些信息数据 传输到另一台计算机上,那么利用串口通信就可以实现.运行本程序 ...

  9. 产生唯一的临时文件mkstemp()

    INUX下建立临时的方法(函数)有很多, mktemp, tmpfile等等. 今天只推荐最安全最好用的一种: mkstemp. mkstemp (建立唯一临时文件)头文件: #include < ...

  10. 创建 dblink

    目的:oracle中跨数据库查询       两台数据库服务器db_A(本地)和db_B(远程192.168.1.100),db_A下用户user_a 需要访问到db_B下user_b的数据解决:查询 ...