...........真的神状态了,没办法去想的状态...................

考试的时候选择$50$分贪心+$15$分状压吧,别的点就放弃算了........

令$f[i]$表示从最小步数为$i$时走到最小步数为$i - 1$的状态的期望步数

(所以题目中的$k$实际上是个提示...........................)

那么当$i > k$时,有$f[i] = \frac{i}{n} + \frac{n - i}{n} * (1 + f[i] + f[i + 1])$

移项后转移就是递推式了

当$i \leqslant k$时,有$f[i] = f[i + 1] + 1$

怎么求解初始状态的最小步数呢?

可以发现,我们一定是从$n$慢慢点到$1$最优

那么,$1$个点会不会被点就跟它的倍数有多少个$1$有关

倒叙枚举$i$,再枚举$i$的倍数看看就好了.....

复杂度$O(n \log n)$

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define ri register int
#define sid 200500 const int mod = ;
int n, k, nj = , mis, ans;
int inv[sid], f[sid], v[sid]; int main() {
n = read(); k = read();
for(ri i = ; i <= n; i ++) v[i] = read(); for(ri i = n; i >= ; i --)
for(ri j = i + i; j <= n; j += i) v[i] ^= v[j];
for(ri i = ; i <= n; i ++) mis += v[i]; inv[] = ;
for(ri i = ; i <= n; i ++)
inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
for(ri i = ; i <= n; i ++) nj = 1ll * nj * i % mod; for(ri i = n; i > k; i --)
f[i] = (n + 1ll * (n - i) * f[i + ] % mod) * inv[i] % mod;
for(ri i = k; i; i --) f[i] = ; for(ri i = ; i <= mis; i ++) (ans += f[i]) %= mod;
printf("%d\n", 1ll * ans * nj % mod);
return ;
}

luoguP3750 [六省联考2017]分手是祝愿 概率期望DP + 贪心的更多相关文章

  1. BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】

    题目 Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 ...

  2. 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)

    传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...

  3. [六省联考2017]分手是祝愿(期望+DP)

    题解 很容易想出来最优策略是什么. 就是从n到1看到开着的灯就把它关了 我们预处理出当前状态把灯全部关闭后的最少步数cnt 然后我们的主人公就要瞎按... 设dp[i]代表当前状态最优解为i步时走到d ...

  4. [六省联考2017]分手是祝愿 题解(期望dp)

    题目描述 B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数. 每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示 ...

  5. 洛谷 P3750 - [六省联考2017]分手是祝愿(期望 dp)

    题面传送门 首先我们需注意到这样一个性质:那就是对于任何一种状态,将其变为全 \(0\) 所用的最小步数的方案是唯一的--考虑编号为 \(n\) 的灯,显然如果它原本是暗着的就不用管它了,如果它是亮着 ...

  6. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  7. bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿

    http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...

  8. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  9. [BZOJ4872][六省联考2017]分手是祝愿

    BZOJ Luogu sol 首先发现肯定有解,又因为每个位置至多操作一次,所以最优解一定是在\([0,n]\)之间 有一种可以在\(O(\sum_{i=1}^{n}\lfloor\frac{n}{i ...

随机推荐

  1. 【BZOJ】1875: [SDOI2009]HH去散步 矩阵快速幂

    [题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵 ...

  2. 【CodeForces】708 B. Recover the String 数学构造

    [题目]B. Recover the String [题意]找到一个串s,满足其中子序列{0,0}{0,1}{1,0}{1,1}的数量分别满足给定的数a1~a4,或判断不存在.数字<=10^9, ...

  3. 爬虫实战--使用Selenium模拟浏览器抓取淘宝商品美食信息

    from selenium import webdriver from selenium.webdriver.common.by import By from selenium.common.exce ...

  4. 41、用Python实现一个二分查找的函数

    data = [1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35] def binary_search(dataset ...

  5. JS 检测客户端断网情况

    常用方法 1 navigator.onLine 2 window.addEventListener() 3 获取网络资源 4 ajax请求 1. navigator.onLine 只会在机器未连上路由 ...

  6. Jsoup爬取带登录验证码的网站

    今天学完爬虫之后想的爬一下我们学校的教务系统,可是发现登录的时候有验证码.因此研究了Jsoup爬取带验证码的网站: 大体的思路是:(需要注意的是__VIEWSTATE一直变化,所以我们每个页面都需要重 ...

  7. webgote的例子(6)SQL注入(盲注)

    SQL Injection - Blind (WS/SOAP) 本期演示的是盲注的手法.有些网站在与数据库交互的地方进行了很好的修饰,将报错的语句进行修改,即使你找到了注入点也无法下手拿数据,这个时候 ...

  8. shell 监控磁盘使用率【转】

    方案一: disks=(`df |sed 1d | awk '{print $1,$5}'|tr -d %`) len=${#disks[@]} ;i<=$len;i=i+));do ];the ...

  9. rust 入门

    hello rust fn main() { println!("Hello, world!"); } 从hello world入手,rust的语法是比较简洁. 在mac os中, ...

  10. C语言地址对齐(转)--网络编程之结构体大小的计算

    什么是地址对齐? 现代计算机中内存空间都是按照字节(byte)划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数 ...