题目描述:

详细的题目描述见上一篇博客《leetcode-137-Single Number II-第一种解法》,这里简单说一下。

有一个数组,所有元素都出现了三次,除了一个元素只出现了一次。输出这个只出现一次的元素。

要求时间复杂度O(n),空间复杂度O(1)。

要完成的函数:

int singleNumber(vector<int>& s)

说明:

上一篇博客中提出的方法很容易理解,但是不是O(n)的时间复杂度,而是O(n^2),这点应该很多朋友都能看出来。

今天给大家分享一个O(n)的方法,先贴出简洁的代码给大家欣赏一下。这个方法同样参考于discuss区。

代码:

int singleNumber(vector<int>& nums)
{
int a = , b = ;
for (int i = ; i < nums.size(); ++i)
{
b = (b ^ nums[i]) & ~a;
a = (a ^ nums[i]) & ~b;
}
return b;
}

短短几行代码,简洁扼要地完成了任务。以下举例详细说明为什么能这样子做,以及推测要如何产生这样子的想法。

举例说明:

数组为[2,2,2,3],一共有四个元素,进行四次循环。

第一次循环,b=(0000^0010)&1111=0010=2,a=(0000^0010)&1101=0000=0

第二次循环,b=(0010^0010)&1111=0000=0,a=(0000^0010)&1111=0010=2

第三次循环,b=(0000^0010)&1101=0000=0,a=(0010^0010)&1111=0000=0

第四次循环,b=(0000^0011)&1111=0011=3,a=(0000^0011)&1100=0000=0

不知道大家有没有发现,某个值nums[i]第一次出现的时候,b把它记录了下来,这时候a=0;接着第二次出现的时候,b被清空了,记录到了a里面;接着第三次出现的时候,b和a都被清空了。

如果一个数组中,所有的元素除了一个特殊的只出现一次,其他都出现了三次,那么根据我们刚刚观察到的结论,最后这个特殊元素必定会被记录在b中。

有些朋友会说,但是不一定数组都是刚好3个2都在一起,3个4都在一起,都能够满足刚刚这样子的做法。

上上篇博客136题中,笔者本人提出了异或其实是满足交换律和结合律的,而且&这个操作也是满足交换律和结合律的,所以无论3个2会不会一起出现,结果都是会刚好抵消的。

所以上述的方法可以解决这个问题。

怎么想出这种方法的:

其实discuss区的大神是设计了一种方法,借由这种方法推出了a和b的变换方式…

我们想要达到的效果其实是——

            a  b

初始状态      :   0   0

第一次碰见某个数x:   0   x(把x记录在b中)

第二次碰见某个数x:   x   0(把x记录在a中)

第三次碰见某个数x:   0   0(把a和b都清空,可以处理其他数)

还记得我们之前处理“所有元素都出现两次,只有一个特殊元素出现一次”的问题吗?其实我们那会想要达到的状态也是——

            a

初始状态      :   0

第一次碰见某个数x:   x(把x记录在a中)

第二次碰见某个数x:   0(把a清空)

然后我们刚好就找到了异或运算可以处理这个问题。

那么这次我们同样利用异或运算,看能不能设计出一种变换的方法让a和b按照上述变换规则,进行转换。

b=0时碰到x,就变成x;b=x时再碰到x,就变成0,这个不就是异或吗?所以我们也许可以设计b=b xor x。

但是当b=0时再再碰到x,这时候b还是要为0,但这时候不同的是a=x,而前两种情况都是a=0。所以我们可以设计成:b=(b xor x)&~a

同样道理,我们可以设计出:a=(a xor x)&~b

在这种变换规则下,a和b都能按照我们设定的状态来发生转化。最后那个只出现一次的元素必定存储在b中。

感想:

异或真的是个神奇的东西,它其实已经内含了“判断”的过程。想一下我们“所有元素都出现两次,只有一个特殊元素出现一次”的问题,我们如果设计一个int型整数result用来记录,假定数组为[2,3,4,2,3],我们当然可以不断地result+2+3+4,但是到了第二次出现2的时候,要怎么判断这个2已经出现过了,这时候要result-2呢?但是异或就可以,只要你出现过一次,它就会永久记得你。

话说异或是怎么实现的?我记得好像跟二进制加法有关?

leetcode-137-Single Number II-第二种解法的更多相关文章

  1. LeetCode 137. Single Number II(只出现一次的数字 II)

    LeetCode 137. Single Number II(只出现一次的数字 II)

  2. Leetcode 137 Single Number II 仅出现一次的数字

    原题地址https://leetcode.com/problems/single-number-ii/ 题目描述Given an array of integers, every element ap ...

  3. [LeetCode] 137. Single Number II 单独数 II

    Given a non-empty array of integers, every element appears three times except for one, which appears ...

  4. LeetCode 137 Single Number II(仅仅出现一次的数字 II)(*)

    翻译 给定一个整型数组,除了某个元素外其余的均出现了三次. 找出这个元素. 备注: 你的算法应该是线性时间复杂度. 你能够不用额外的空间来实现它吗? 原文 Given an array of inte ...

  5. [LeetCode] 137. Single Number II 单独的数字之二

    Given a non-empty array of integers, every element appears three times except for one, which appears ...

  6. 详解LeetCode 137. Single Number II

    Given an array of integers, every element appears three times except for one, which appears exactly ...

  7. leetcode 137. Single Number II ----- java

    Given an array of integers, every element appears three times except for one. Find that single one. ...

  8. Java [Leetcode 137]Single Number II

    题目描述: Given an array of integers, every element appears three times except for one. Find that single ...

  9. LeetCode 137 Single Number II 数组中除了一个数外,其他的数都出现了三次,找出这个只出现一次的数

    Given an array of integers, every element appears three times except for one, which appears exactly ...

  10. Java for LeetCode 137 Single Number II

    Given an array of integers, every element appears three times except for one. Find that single one. ...

随机推荐

  1. 653. Two Sum IV - Input is a BST 二叉树版本

    [抄题]: Given a Binary Search Tree and a target number, return true if there exist two elements in the ...

  2. jdk+Tomcat环境

    1.Tomcat概述 Tomcat服务器由Apache提供,开源免费.安装Tomcat之前需要先安装JDK,其实无论哪一种Javaweb服务器都需要先安装JDK. Tomcat6支持Servlet2. ...

  3. SQL 数据库 学习 003 什么是数据库? 为什么需要数据库?是不是所有的软件都是用Sql Server?

    什么是数据库? 为什么需要数据库? 是不是所有的软件都是用Sql Server? 我的电脑系统: Windows 10 64位 使用的SQL Server软件: SQL Server 2014 Exp ...

  4. Openssl sess_id命令

    一.简介 sess_id指令是一个调试工具,用来处理SSL_SESSION结构的,可以打印出其中的细节 二.语法 openssl sess_id [-inform PEM|DER] [-outform ...

  5. mybatis常用方法总结

    mybatis的强大特性之一就是动态SQL.我们在写复杂查询的时候,会发现复杂查询包括了各种各样的判断,我们很难一鼓作气的写出完美的查询.动态SQL语句可以帮助我们拼接不同的SQL语句,而已让我们的代 ...

  6. servletConfig的应用

    在Servlet的配置文件中,可以使用一个或多个<init-param>标签为servlet配置一些初始化参数. 当servlet配置了初始化参数后,web容器在创建servlet实例对象 ...

  7. RenderPage()加载局部页和传递数据

    System.Web.WebPages.WebPageBase类的方法public override HelperResult RenderPage(string path, params objec ...

  8. Currying and Uncurrying Js

    //反科里化Function.prototype.uncurrying = function() { var _this = this; return function() { return Func ...

  9. 卡在Initializing Spring root WebApplicationContext

    1,多数情况下是连接数据库时出现问题, 2,如果使用mybatis 请查看 xml映射文件是否和对应的java 的dao文件名字相同,或者<mapper namespace="com. ...

  10. Maven打包jar项目

    默认情况下,使用maven打包的jar项目(执行maven install)不会包含其他包引用,要想打包为带其他项目引用的jar,需要加入插件 要得到一个可以直接在命令行通过java命令运行的JAR文 ...