/** Spark
SQL源代码分析系列文章
*/

前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的。

那么基于以上存储结构,我们查询cache在jvm内的数据又是怎样查询的,本文将揭示查询In-Memory Data的方式。

一、引子

本例使用hive console里查询cache后的src表。
select value from src

当我们将src表cache到了内存后,再次查询src,能够通过analyzed运行计划来观察内部调用。

即parse后,会形成InMemoryRelation结点,最后运行物理计划时,会调用InMemoryColumnarTableScan这个结点的方法。

例如以下:

scala> val exe = executePlan(sql("select value from src").queryExecution.analyzed)
14/09/26 10:30:26 INFO parse.ParseDriver: Parsing command: select value from src
14/09/26 10:30:26 INFO parse.ParseDriver: Parse Completed
exe: org.apache.spark.sql.hive.test.TestHive.QueryExecution =
== Parsed Logical Plan ==
Project [value#5]
InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) == Analyzed Logical Plan ==
Project [value#5]
InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) == Optimized Logical Plan ==
Project [value#5]
InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) == Physical Plan ==
InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)) //查询内存中表的入口 Code Generation: false
== RDD ==

二、InMemoryColumnarTableScan

InMemoryColumnarTableScan是Catalyst里的一个叶子结点,包括了要查询的attributes,和InMemoryRelation(封装了我们缓存的In-Columnar Storage数据结构)。
运行叶子节点,出发execute方法对内存数据进行查询。
1、查询时,调用InMemoryRelation,对其封装的内存数据结构的每一个分区进行操作。
2、获取要请求的attributes,如上,查询请求的是src表的value属性。
3、依据目的查询表达式,来获取在相应存储结构中,请求列的index索引。
4、通过ColumnAccessor来对每一个buffer进行訪问,获取相应查询数据,并封装为Row对象返回。

private[sql] case class InMemoryColumnarTableScan(
    attributes: Seq[Attribute],
    relation: InMemoryRelation)
  extends LeafNode {   override def output: Seq[Attribute] = attributes   override def execute() = {
    relation.cachedColumnBuffers.mapPartitions { iterator =>
      // Find the ordinals of the requested columns.  If none are requested, use the first.
      val requestedColumns = if (attributes.isEmpty) {
        Seq(0)
      } else {
        attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId)) //依据表达式exprId找出相应列的ByteBuffer的索引
      }       iterator
        .map(batch => requestedColumns.map(batch(_)).map(ColumnAccessor(_)))//依据索引取得相应请求列的ByteBuffer,并封装为ColumnAccessor。
        .flatMap { columnAccessors =>
          val nextRow = new GenericMutableRow(columnAccessors.length) //Row的长度
          new Iterator[Row] {
            override def next() = {
              var i = 0
              while (i < nextRow.length) {
                columnAccessors(i).extractTo(nextRow, i) //依据相应index和长度,从byterbuffer里取得值,封装到row里
                i += 1
              }
              nextRow
            }             override def hasNext = columnAccessors.head.hasNext
          }
        }
    }
  }
}

查询请求的列,例如以下:

scala> exe.optimizedPlan
res93: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
Project [value#5]
InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) scala> val relation = exe.optimizedPlan(1)
relation: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) scala> val request_relation = exe.executedPlan
request_relation: org.apache.spark.sql.execution.SparkPlan =
InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)) scala> request_relation.output //请求的列,我们请求的仅仅有value列
res95: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5) scala> relation.output //默认保存在relation中的全部列
res96: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(key#4, value#5) scala> val attributes = request_relation.output
attributes: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
整个流程非常简洁,关键步骤是第三步。依据ExprId来查找到,请求列的索引
attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
//依据exprId找出相应ID
scala> val attr_index = attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
attr_index: Seq[Int] = ArrayBuffer(1) //找到请求的列value的索引是1, 我们查询就从Index为1的bytebuffer中,请求数据 scala> relation.output.foreach(e=>println(e.exprId))
ExprId(4) //相应<span style="font-family: Arial, Helvetica, sans-serif;">[key#4,value#5]</span>
ExprId(5) scala> request_relation.output.foreach(e=>println(e.exprId))
ExprId(5)

三、ColumnAccessor

ColumnAccessor相应每一种类型,类图例如以下:

最后返回一个新的迭代器:

          new Iterator[Row] {
override def next() = {
var i = 0
while (i < nextRow.length) { //请求列的长度
columnAccessors(i).extractTo(nextRow, i)//调用columnType.setField(row, ordinal, extractSingle(buffer))解析buffer
i += 1
}
nextRow//返回解析后的row
} override def hasNext = columnAccessors.head.hasNext
}

四、总结

Spark SQL In-Memory Columnar Storage的查询相对来说还是比較简单的,其查询思想主要和存储的数据结构有关。

即存储时,按每列放到一个bytebuffer,形成一个bytebuffer数组。

查询时,依据请求列的exprId查找到上述数组的索引,然后使用ColumnAccessor对buffer中字段进行解析,最后封装为Row对象,返回。

——EOF——

原创文章,转载请注明出自:http://blog.csdn.net/oopsoom/article/details/39577419

Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query的更多相关文章

  1. Spark SQL 源代码分析系列

    从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...

  2. Spark SQL源代码分析之核心流程

    /** Spark SQL源代码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几 ...

  3. Spark SQL 源代码分析之Physical Plan 到 RDD的详细实现

    /** Spark SQL源代码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源代码分析之Physical Plan.本文将介绍Physical Plan的toRDD的详细实现细节 ...

  4. Spark SQL概念学习系列之Spark SQL 架构分析(四)

    Spark SQL 与传统 DBMS 的查询优化器 + 执行器的架构较为类似,只不过其执行器是在分布式环境中实现,并采用的 Spark 作为执行引擎. Spark SQL 的查询优化是Catalyst ...

  5. Spark Core源代码分析: Spark任务运行模型

    DAGScheduler 面向stage的调度层,为job生成以stage组成的DAG,提交TaskSet给TaskScheduler运行. 每个Stage内,都是独立的tasks,他们共同运行同一个 ...

  6. Spark Core源代码分析: RDD基础

    RDD RDD初始參数:上下文和一组依赖 abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @tran ...

  7. Spark Core源代码分析: Spark任务模型

    概述 一个Spark的Job分为多个stage,最后一个stage会包含一个或多个ResultTask,前面的stages会包含一个或多个ShuffleMapTasks. ResultTask运行并将 ...

  8. Spark SQL Catalyst源代码分析之TreeNode Library

    /** Spark SQL源代码分析系列文章*/ 前几篇文章介绍了Spark SQL的Catalyst的核心执行流程.SqlParser,和Analyzer,本来打算直接写Optimizer的,可是发 ...

  9. Spark SQL Catalyst源代码分析Optimizer

    /** Spark SQL源代码分析系列*/ 前几篇文章介绍了Spark SQL的Catalyst的核心运行流程.SqlParser,和Analyzer 以及核心类库TreeNode,本文将具体解说S ...

随机推荐

  1. elk 搭建

    elk 平台搭建: ELK平台搭建 系统环境 System: Centos release 6.7 (Final) ElasticSearch: 2.1.0 Logstash: 2.1.1 Kiban ...

  2. Android 使用动态载入框架DL进行插件化开发

    如有转载,请声明出处: 时之沙: http://blog.csdn.net/t12x3456    (来自时之沙的csdn博客) 概述: 随着应用的不断迭代.应用的体积不断增大,项目越来越臃肿,冗余添 ...

  3. Java集合中对象排序

    集合中的对象排序需求还是比較常见的.当然我们能够重写equals方法,循环比較:同一时候Java为我们提供了更易使用的APIs.当须要排序的集合或数组不是单纯的数字型时,通常能够使用Comparato ...

  4. 【转】Android数字证书

    Android数字证书的作用是非常重要的.Android操作系统每一个应用程序的安装都需要经过这一数字证书的签名. Android手机操作系统作为一款比较流行的开源系统在手机领域占据着举足轻重的地位. ...

  5. 关于int.TryParse的使用

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. linux脚本:ftp自动传输文件

    使用Shell脚本实现ftp的自动上传下载 http://liwenge.iteye.com/blog/566515 open 192.168.1.171 user guest 123456cd /h ...

  7. Hibernate 多对一

    Hibernate的many-to-one 关联. 具体看配置文件: <?xml version="1.0"?> <!DOCTYPE hibernate-mapp ...

  8. lodop 打印控件的使用

    先看效果图 : lodop插件  需要安装 打印浏览效果: 实现打印的前提条件 去官网下载几个js包 : http://www.lodop.net/download.html 添加到项目中 图片如下: ...

  9. Week3(9月26日):做完后,总结下

    Part I:提问  =========================== 1.linq小回顾 (1)Movies控制器中Index动作,显示全部电影信息. public ActionResult ...

  10. 如何自学 Python(干货合集)

    http://wenku.baidu.com/view/5108f974192e45361066f583.html