3.2:pandas数据的导入与导出【CSV,JSON】
一:CSV数据
一】:导入数据
1)从CSV文件读入数据:pd.read_csv("文件名"),默认以逗号为分隔符
D:\data\ex1.csv文件内容: D:\data\ex2.csv文件内容
a,b,c,d,message 1,2,3,4,hello
1,2,3,4,hello 5,6,7,8,world
5,6,7,8,world 9,10,11,12,foo
9,10,11,12,foo
In [3]: df1 = pd.read_csv('D:\data\ex1.csv') #打开后默认添加index为从0自增长,columns默认用第一行数据
In [4]: df1
Out[4]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [15]: df2 = pd.read_csv('D:\data\ex2.csv')
In [16]: df2
Out[16]:
1 2 3 4 hello
0 5 6 7 8 world
1 9 10 11 12 foo
In [17]: df2 = pd.read_csv('D:\data\ex2.csv',header=None) #header参数指定columns都为从0自增长的数
In [18]: df2
Out[18]:
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [8]: df2 = pd.read_csv('D:\data\ex2.csv',names=list('abcde')) #用names参数指定columns的值
In [9]: df2
Out[9]:
a b c d e
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [13]: df2 = pd.read_csv('D:\data\ex2.csv',names=list('abcde'),index_col='e') #用index_col用指定的columns首元素作为index
In [14]: df2
Out[14]:
a b c d
e
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
2)其他格式:pd.read_table('文件名', sep='划分依据'),划分依据可用正则表达式【\s:空格等不可见字符】
注:read_table方法几乎可以读所有的表格型数据,包括txt,csv等等
D:\data\ex3.txt D:\data\ex4.txt
A B C D A B C
aaa -0.2 -1.02 -0.62 aaa -0.2 -1.02 -0.62
bbb 0.93 0.3 -0.03 bbb 0.93 0.3 -0.03
ccc -0.26 -0.39 -0.22 ccc -0.26 -0.39 -0.22
ddd -0.87 -0.35 1.1 ddd -0.87 -0.35 1.1
In [37]: df1 = pd.read_table('D:\data\ex3.txt',sep='\s+')
In [38]: df1
Out[38]:
A B C #以最小列数为准,取dataframe数据,且第一行数据作为columns,剩下的如果第一列作为多出则作为index,否者从0自增数作为index
aaa -0.20 -1.02 -0.62
bbb 0.93 0.30 -0.03
ccc -0.26 -0.39 -0.22
ddd -0.87 -0.35 1.10
In [44]: df2 = pd.read_table('D:\data\ex4.txt',sep='\s+')
In [45]: df2
Out[45]:
D A B C
aaa -0.20 -1.02 -0.62
bbb 0.93 0.30 -0.03
ccc -0.26 -0.39 -0.22
ddd -0.87 -0.35 1.10
3)扩展技巧
read_csv/read_table函数参数


D:\data\ex5.csv D:\data\ex6.csv
#hey! something,a,b,c,d,message
a,b,c,d,message one,1,2,3,4,NA
#just wanted to make things two,5,6,,8,world
#who are you three,9,10,11,12,foo
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
In [46]: df5 = pd.read_csv('D:\data\ex5.csv')
In [47]: df5
Out[47]:
#hey!
a b c d message
#just wanted to make things NaN NaN NaN NaN
#who are you NaN NaN NaN NaN
1 2 3 4 hello
5 6 7 8 world
9 10 11 12 foo
In [48]: df5 = pd.read_csv('D:\data\ex5.csv',skiprows=[0,2,3])
In [49]: df5
Out[49]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [59]: df5 = pd.read_csv('D:\data\ex6.csv',nrows = 2)
In [60]: df5
Out[60]:
something a b c d message
0 one 1 2 3 4 NaN
1 two 5 6 NaN 8 world
In [55]: df6 = pd.read_csv('D:\data\ex6.csv',na_values={'message':['foo','NA'],'something':['two']})
In [56]: df6
Out[56]:
something a b c d message
0 one 1 2 3 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11 12 NaN
二】 数据的写出:to_csv('文件名' , [index=..., header=...] )
In [7]: df = pd.read_csv('D:\data\ex1.csv',header=None)
In [8]: df
Out[8]:
0 1 2 3 4
0 a b c d message
1 1 2 3 4 hello
2 5 6 7 8 world
3 9 10 11 12 foo
In[9]:df.to_csv('D:\data\out1.csv')
In[10]:df.to_csv('D:\data\out2.csv',index=False,header=False) #即是把index和columns都弃掉,header表示columns
二:JSON格式
Json类型基本数据类型有对象(字典),数组(列表),字符串,数值,bool 以及 null。
注:若是字典,键的类型必须是string
In [22]: js = """{
....: "name":"Wes",
....: "places_lived":["US","Spain","Germany"],
....: "pet":null,
....: "siblings":[{"name":"Scott","age":25,"pet":"Zuko"},
....: {"name":"Katie","age":33,"pet":"Cisco"}]}
....: """
In [26]: import json
In [27]: data = json.loads(js) #将json格式转化为python格式
In [28]: data
Out[28]:
{u'name': u'Wes',
u'pet': None,
u'places_lived': [u'US', u'Spain', u'Germany'],
u'siblings': [{u'age': 25, u'name': u'Scott', u'pet': u'Zuko'},
{u'age': 33, u'name': u'Katie', u'pet': u'Cisco'}]}
In [29]: #a_js = json.dumps(data) #将python格式转化为json格式
#最简单构造方法就是提取其中的数据,注意columns list中的值对应json数据中的需要提取的键并将其作为columns
In [31]: siblings = pd.DataFrame(data['siblings'],columns=['name','age'])
In [32]: siblings
Out[32]:
name age
0 Scott 25
1 Katie 33
三:XML与HTML
pass
四:二进制 179
pass
五:Excel 180
pass
七:HTML 与 Web API 181
许多网站提供基于json格式的数据API,通过request等库可以获取
pass
六:数据库 182
pass
七:MongDB
184
3.2:pandas数据的导入与导出【CSV,JSON】的更多相关文章
- 基于Metronic的Bootstrap开发框架经验总结(7)--数据的导入、导出及附件的查看处理
在很多系统模块里面,我们可能都需要进行一定的数据交换处理,也就是数据的导入或者导出操作,这样的批量处理能给系统用户更好的操作体验,也提高了用户录入数据的效率.我在较早时期的EasyUI的Web框架上, ...
- 基于MVC4+EasyUI的Web开发框架经验总结(10)--在Web界面上实现数据的导入和导出
数据的导入导出,在很多系统里面都比较常见,这个导入导出的操作,在Winform里面比较容易实现,我曾经在之前的一篇文章<Winform开发框架之通用数据导入导出操作>介绍了在Winform ...
- Oracle 数据的导入和导出(SID service.msc)
一:版本号说明: (1)(Oracle11 32位系统)Oracle - OraDb11g_home1: (2)成功安装后显演示样例如以下:第一个图是管理工具.创建连接.创建表:第二个是数据库创建工 ...
- Matlab文件和数据的导入与导出
ref: https://blog.csdn.net/zengzeyu/article/details/72530596 Matlab文件和数据的导入与导出 2017年05月19日 15:18:35 ...
- (转)基于Metronic的Bootstrap开发框架经验总结(7)--数据的导入、导出及附件的查看处理
http://www.cnblogs.com/wuhuacong/p/4777720.html 在很多系统模块里面,我们可能都需要进行一定的数据交换处理,也就是数据的导入或者导出操作,这样的批量处理能 ...
- 使用PHP导入和导出CSV文件
我们先准备mysql数据表,假设项目中有一张记录学生信息的表student,并有id,name,sex,age分别记录学生的姓名.性别.年龄等信息. CREATE TABLE `student` ( ...
- 【转】使用PHP导入和导出CSV文件
项目开发中,很多时候要将外部CSV文件导入到数据库中或者将数据导出为CSV文件,那么具体该如何实现呢?本文将使用PHP并结合mysql,实现了CSV格式数据的导入和导出功能.我们先准备mysql数据表 ...
- HBase数据的导入和导出
查阅了几篇中英文资料,发现有的地方说的不是很全部,总结在此,共有两种命令行的方式来实现数据的导入导出功能,即备份和还原. 1 HBase本身提供的接口 其调用形式为: 1)导入 ./hbase org ...
- Hive中数据的导入与导出
最近在做一个小任务,将一个CDH平台中Hive的部分数据同步到另一个平台中.毕竟我也刚开始工作,在正式开始做之前,首先进行了一段时间的练习,下面的内容就是练习时写的文档中的内容.如果哪里有错误或者疏漏 ...
随机推荐
- BIOS+MBR模式 VS UEFI+GPT模式
EFI与MBR启动的区别 大硬盘和WIN8系统,让我们从传统的BIOS+MBR模式升级到UEFI+GPT模式,现在购买的主流电脑,都是预装WIN8系统,为了更好的支持2TB硬盘 ,更快速的启动win ...
- 快速幂:quickpow
众所周知,快速幂是优化对数的次方运算的最普遍手段.在学习快速幂的思想时,其分治思想容易让大家用简单的递归实现. 但其实,除了递归之外,更好的方法会是简单的 WHILE循环.下面贴代码: #includ ...
- memmove 的实现
baidu的笔试题目 用C语言实现一个公用库函数void * memmove(void *dest,const void *src,size_t n).该函数的功能是拷贝src所指的内存内容前n个字节 ...
- 关于C++的变量和类的声明和定义
什么是变量?变量或者叫对象,是一个有具名的.可以供程序操作的存储空间.这里具名是指变量是有名字的,可供操作是指能进行加减乘除或者输入输出等操作,存储空间则是指有一块属于它的内存空间. 为了便于说明,标 ...
- [转] JS运算符 &&和|| 及其优先级
第一.&& (逻辑与)运算,看一个简单的例子: var a = 1 && 2 && 3; var b = 0 && 1 &&am ...
- IEnumerable中的 Any方法
IEnumerable类中的 Any方法,表示集合中有任何一元素满足条件,返回就true , 该方法有两个重载 1. 不带任何参数,表示集合中有元素 2. 参入一个 Func<TSource, ...
- scss组件定制的一些学习
应组织上的要求,简化前端开发,提高工作效率,开始着手研究scss框架及组件化. 把一些长的像的弄在一起,就有了组件化. 但组件只用一部分需要的,就有了定制. 下面是参考一个button组件写出的一些简 ...
- C#泛型理解(转)
[译]C# 理解泛型 PDF 浏览:http://www.tracefact.net/document/generics-in-csharp.pdf源码下载:http://www.tracefact ...
- python笔记——第二天
早上6:40起床,睡眼惺忪,学学代码提提神.学完了条件语句. input函数输入值为字符串,处理前转化为int()或float()或其他. if else elif 注意书写格式,否则容易出现synt ...
- python简介与基本操作
一.python的历史 python的创始人Guido van Rossum,现就职于Dropbox公司. 1989年12月份诞生了python1.0 2000年10月16日发布了python2.0 ...