HDU 3923 Invoker 【裸Polya 定理】
参考了http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 的模板
对于每一种染色,都有一个等价群,例如旋转,翻转等。我们将每一种变换转换成一个置换群,通过置换群得到的都是等价的染色方案
最终我们要求的是非等价的染色方案数。
在Burnside定理中给出,在每一种置换群也就是等价群中的数量和除以置换群的数量,即非等价的着色数等于在置换群中的置换作用下保持不变的着色平均数。
我们以POJ 2409 Let it Bead为例http://poj.org/problem?id=2409
N个物品的环,M种颜色。非常基础的问题
那么总共有多少个置换群呢,显然旋转是等价的,那么包括旋转0度,总共便是N个旋转。
对于每一个旋转的等价数量怎么算呢。我们发现每一个旋转置换中有若干个循环节,例如1,3,5是一个循环节,那么旋转一次,1号位到了3号位,3号位到了5号位,显然一个循环节内的颜色一定是一样的。有M种颜色选择,问题转换成有多少个循环节。对于旋转显然有GCD(i,n)。那只要枚举i便可以,这就是Polya定理。
而在翻转当中,如果N为奇数,明显有一个物品是不动的,其它的两两对称,颜色也是一样的。n/2+1个循环节,
如果 N为偶数,分为两种情况,一种是对称轴不过物品,那么所有物品两两对应,n/2个循环节,另外一种是对称轴经过两个物品,(n-2)/2+1+1个循环节。对于每一个循环节有M种颜色可以选择。
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 100005
#define inf 1<<29
#define MOD 2007
#define LL long long
using namespace std;
LL gcd(LL a,LL b){
return b==?a:gcd(b,a%b);
}
LL Pow(LL a,int b){
LL ret=;
while(b){
if(b&)
ret=ret*a;
a=a*a;
b>>=;
}
return ret;
}
LL Polya(int n,int m){
LL sum=;
//枚举n种旋转
for(int i=;i<=n;i++)
//每个循环节是m种颜色可选
//总共有gcd(n,i)个循环节
sum+=Pow(m,gcd(n,i));
if(n&)
//如果为奇数,所有位置上的循环节数量都为n/2+1
sum+=n*Pow(m,n/+);
else
//否则要分奇偶,各一半
sum+=n/*Pow(m,n/)+n/*Pow(m,n/+);
return sum//n;
}
int n,m;
int main(){
while(scanf("%d%d",&m,&n)!=EOF&&n+m){
printf("%lld\n",Polya(n,m));
}
return ;
}
对于N如果非常大的话,枚举旋转就非常耗时。接下来可以有个优化
我们枚举循环节长度L,那么循环节个数便是N/L,必然L必须是N的约数才行。
那么d=N/L=gcd(i,N),对于每一个L,我们需要求出有多少个i满足左边的式子。
令i=d*t,gcd(d*t,L*d)=d,要左边的式子成立,明显gcd(t,L)==1,否则最大公约数不为d。
那么对于任意的t满足与L互质即可,便是L的欧拉函数值
这样就可以在sqrt(n)的复杂度内枚举L, ∑(phi(L) * M^(N/L) ) % p (L即枚举值) 。
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 100005
#define inf 1<<29
#define MOD 2007
#define LL long long
using namespace std;
LL gcd(LL a,LL b){
return b==?a:gcd(b,a%b);
}
LL Eular(LL n){
LL ret=;
for(int i=;i*i<=n;i++){
if(n%i==){
n/=i;
ret*=i-;
while(n%i==){
n/=i;
ret*=i;
}
}
}
if(n>) ret*=n-;
return ret;
}
LL Pow(LL a,LL b){
LL ret=;
while(b){
if(b&)
ret=ret*a;
a=a*a;
b>>=;
}
return ret;
}
LL Polya(int n,int m){
LL sum=;
int i;
for(i=;i*i<n;i++)
if(n%i==){
sum+=Eular(i)*Pow(m,n/i);
sum+=Eular(n/i)*Pow(m,i);
}
if(i*i==n) sum+=Eular(i)*Pow(m,i);
if(n&)
sum+=n*Pow(m,n/+);
else
sum+=n/*Pow(m,n/)+n/*Pow(m,n/+);
return sum//n;
}
int n,m;
int main(){
while(scanf("%d%d",&m,&n)!=EOF&&n+m)
printf("%lld\n",Polya(n,m));
return ;
}
Source Code:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define MOD 1000000007
#define LL long long
using namespace std;
int prime[]={,,,,,,,,,,,,,,
,,,,,,,,,,,},cnt=;
LL n,m;
LL eular(LL n){
LL sum = ;
for(int i = ; i <= sqrt(1.0 + n); ++i)
if(n % i==){
sum *= (i-);
n /= i;
while(n % i == ){
sum *= i;
n /= i;
}
}
if(n > )
sum *= (n-);
return sum % MOD;
}
LL Pow(LL a,LL b){
LL ret=;
while(b){
if(b&)
ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=;
}
return ret;
}
LL Polya(){
LL sum=,i;
for(i=;i*i<n;i++){
if(n%i==){
sum=(sum+eular(i)*Pow(m,n/i))%MOD;
sum=(sum+eular(n/i)*Pow(m,i))%MOD;
}
}
if(i*i==n)
sum=(sum+eular(i)*Pow(m,i))%MOD;
if(n&)
sum=(sum+n*Pow(m,n/+))%MOD;
else
sum=(sum+n/*(Pow(m,n/)+Pow(m,n/+)))%MOD;
return (sum*Pow(*n,MOD-))%MOD;
}
int main(){
LL t,cas=;
scanf("%I64d",&t);
while(t--){
scanf("%I64d%I64d",&m,&n);
printf("Case #%I64d: %I64d\n",++cas,Polya());
}
return ;
}
HDU 3923 Invoker 【裸Polya 定理】的更多相关文章
- HDU 3923 Invoker(polya定理+逆元)
Invoker Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 122768/62768 K (Java/Others)Total Su ...
- poj 1286 Necklace of Beads poj 2409 Let it Bead HDU 3923 Invoker <组合数学>
链接:http://poj.org/problem?id=1286 http://poj.org/problem?id=2409 #include <cstdio> #include &l ...
- HDU 3923 Invoker | 暑训Day1 C题填坑
暑训第一天,专题为组合数学与概率期望. 最近一个月都没有学习新的知识,上午听聚聚讲课头脑都是一片空白.加上长期没刷题,下午做练习题毫无感觉.到晚上总算理清了蓝书上的一些概念,跟着榜单做题.最后唯独剩下 ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)
Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...
- hdu 3923 Invoker
完全是套用polya模版…… ;}
- HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633 典型的Polya定理: 思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个 ...
- hdu 1817 Necklace of Beads(Polya定理)
Necklace of Beads Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- hdu 3547 (polya定理 + 小高精)
DIY CubeTime Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
随机推荐
- poj 2773 Happy 2006 容斥原理+二分
题目链接 容斥原理求第k个与n互质的数. #include <iostream> #include <vector> #include <cstdio> #incl ...
- 灵动标签内sql语句调用
本节来介绍帝国cms中,灵动标签中如何写数据库调用我们所要的信息.方便一些没有学习过数据库的朋友 转载请注明出处:谢寒的博客 灵动标签默认的语法 [e:loop={栏目ID/专题ID,显示条数,操作类 ...
- Browserify: 使nodejs模块可以在浏览器下使用
Browserify:浏览器加载Node.js模块--------------------------------------------------随着JavaScript程序逐渐模块化,在ECMA ...
- WIZnet即将推出高性能网络芯片W5500
WIZnet将于9月份推出高性能网络芯片W5500,这是继W5100.W5200和W5300之后一款全新的全硬件TCP/IP协议栈网络芯片,这款芯片具有更低功耗与工作温度,及改良工艺,是嵌入式以太网的 ...
- openScales源码学习系列之 Feature属性
coordinates:当前区域,geometry或Polygon的点集合. countries.国家所在位置下标 SQKM.平方千米 COLOR_MAP.该国家的颜色类别 SQMI.平方英里 CON ...
- 代码收藏 JS实现页内查找定位功能
前部分为IE下搜索方法 用TextRange来实现 后部分为firefox.chrome下搜索方法 var nextIndex = 0; var searchValue = ''; var input ...
- Poj 2232 Moo Volume(排序)
题目链接:http://poj.org/problem?id=2231 思路分析:先排序,再推导计算公式. 代码如下: #include <iostream> #include <a ...
- Google启封后依然不能用
门事件周年纪念日过后一段时间,狗狗启封了,但撸主的狗狗仍旧不能用,突然想起来之前帆樯时候改动了某些配置,比方hosts文件,这个文件的路径为:C:\Windows\System32\drivers\e ...
- js中new构造函数的研究
<javascript高级编程>里对new操作符的解释: new操作符会让构造函数产生如下变化: 1. 创建一个新对象: 2. 将构造函数的作用域赋给新对象(因此t ...
- 关于SOQL(一)
SOQL 是Salesforce中的查询语言,他的全称是Salesforce Object Query Language. 从字面上就能够看出,这个语言是一种基于对象的查询语言. 在Salesforc ...