USACO6.5-Closed Fences:计算几何
Closed Fences
A closed fence in the plane is a set of non-crossing, connected line
segments with N corners (3 < N < 200). The corners or vertices
are each distinct and are listed in counter-clockwise order in an array
{xi, yi}, i in (1..N).
Every pair of adjacent vertices defines a side of the fence. Thus
{xi yi xi+1 yi+1} is a side
of the fence for all i in (1..N). For our purposes, N+1 = 1, so that
the first and last vertices making the fence closed.
Here is a typical closed fence and a point x,y:
* x3,y3
x5,y5 / \
x,y * * / \
/ \ / \
/ * \
x6,y6* x4,y4 \
| \
| \
x1,y1*----------------* x2,y2
Write a program which will do the following:
- Test an ordered list of vertices {xi,yi}, i in (1..N) to see if the array is a valid fence.
- Find the set of fence sides that a person (with no height) who is standing in the plane at position (x,y) can "see" when looking at the fence. The location x,y may fall anywhere not on the fence.
A fence side can be seen if there exists a ray that connects (x,y) and any point on the side, and the ray does not intersect any other side of the fence. A side that is parallel to the line of sight is not considered visible. In the figure, above the segments x3,y3-x4,y4; x5,y5-x6,y6; and x6-y6-x1,y1 are visible or partially visible from x,y.
PROGRAM NAME: fence4
INPUT FORMAT
| Line 1: | N, the number of corners in the fence |
| Line 2: | Two space-separated integers, x and y, that are the location of the observer. Both integers will fit into 16 bits. |
| Line 3-N+2: | A pair of space-separated integers denoting the X,Y location of the corner. The pairs are given in counterclockwise order. Both integers are no larger than 1000 in magnitude. |
NOTE: I have added anNew test case #12 for this task. Let me know if you think it's wrong. Rob Be sure to include USACO in your mail subject!
SAMPLE INPUT (file fence4.in)
13
5 5
0 0
7 0
5 2
7 5
5 7
3 5
4 9
1 8
2 5
0 9
-2 7
0 3
-3 1
OUTPUT FORMAT
If the sequence is not a valid fence, the output is a single line containing the word "NOFENCE".
Otherwise, the output is a listing of visible fence segments, one per line, shown as four space-separated integers that represent the two corners. Express the points in the segment by showing first the point that is earlier in the input, then the point that is later. Sort the segments for output by examining the last point and showing first those points that are earlier in the input. Use the same rule on the first of the two points in case of ties.
SAMPLE OUTPUT (file fence4.out)
7
0 0 7 0
5 2 7 5
7 5 5 7
5 7 3 5
-2 7 0 3
0 0 -3 1
0 3 -3 1
一道计算几何,需要细心做,特判几种情况,一种是点在某段篱笆的平行线上,这种情况是不能算看到的,这也是我第一次WA的原因。。。。T.T
一种是将端点沿着篱笆移动一段很小的距离,这样就避免了篱笆在端点处相交的情况。
还有就是按题目要求来排序。
这题要是没数据的话,我肯定找不到我错在哪的 o(>﹏<)o
Executing...
Test 1: TEST OK [0.003 secs, 3508 KB]
Test 2: TEST OK [0.003 secs, 3508 KB]
Test 3: TEST OK [0.003 secs, 3508 KB]
Test 4: TEST OK [0.005 secs, 3508 KB]
Test 5: TEST OK [0.003 secs, 3508 KB]
Test 6: TEST OK [0.014 secs, 3508 KB]
Test 7: TEST OK [0.008 secs, 3508 KB]
Test 8: TEST OK [0.008 secs, 3508 KB]
Test 9: TEST OK [0.011 secs, 3508 KB]
Test 10: TEST OK [0.008 secs, 3508 KB]
Test 11: TEST OK [0.003 secs, 3508 KB]
Test 12: TEST OK [0.003 secs, 3508 KB] All tests OK.
/*
TASK:fence4
LANG:C++
*/ #include <iostream>
#include <vector>
#include <stdlib.h>
#include <stdio.h>
#include <cmath>
using namespace std; //定义点
struct Point
{
double x;
double y;
};
typedef Point Vector;
bool operator == (const Point& p1, const Point& p2)
{
return fabs(p1.x - p2.x)<1e- && fabs(p1.y - p2.y)<1e-;
}
typedef struct Point point;
Vector operator - (const Point& A, const Point& B)
{
return Vector{A.x-B.x, A.y-B.y};
}
double Cross(const Vector& A, const Vector& B)
{
return A.x*B.y - A.y*B.x;
}
//叉积
double multi(point p0, point p1, point p2)
{
return (p1.x - p0.x )*( p2.y - p0.y )-( p2.x -p0.x )*( p1.y -p0.y );
}
//点积
double Dot(Vector A,Vector B)
{
return A.x*B.x+A.y*B.y;
} //相交返回true,否则为false, 接口为两线段的端点
bool isIntersected(point s1,point e1, point s2,point e2)
{
if(s1==s2 || s1==e2 || e1==s2 || e1==e2)
{
return false;
}
return (max(s1.x,e1.x) >=min(s2.x,e2.x)) &&
(max(s2.x,e2.x)>=min(s1.x,e1.x)) &&
(max(s1.y,e1.y) >=min(s2.y,e2.y)) &&
(max(s2.y,e2.y) >=min(s1.y,e1.y)) &&
(multi(s1,s2,e1)*multi(s1,e1,e2)>) &&
(multi(s2,s1,e2)*multi(s2,e2,e1)>);
} point ps[];
double x,y;
int n ;
bool check(int idx)
{
point pos=point {x,y};
// 特判pos与线段idx平行的情况
if(fabs(Cross(ps[idx]-pos,ps[idx+]-pos))<1e-)
{
return false;
} bool flag=false;
for(int i=; i<n; i++)
{
// 将ps[idx]移动一小段距离
if(i==idx)
continue;
double dx=(ps[idx+].x-ps[idx].x)*1e-;
double dy=(ps[idx+].y-ps[idx].y)*1e-; if(isIntersected(pos,point {ps[idx].x+dx,ps[idx].y+dy},ps[i],ps[i+]))
flag=true;
}
if(!flag)
return true;
for(int i=; i<n; i++)
{
if(i==idx)
continue; double dx=(ps[idx].x-ps[idx+].x)*1e-;
double dy=(ps[idx].y-ps[idx+].y)*1e-; if(isIntersected(pos,point {ps[idx+].x+dx,ps[idx+].y+dy},ps[i],ps[i+]))
return false;
}
return true;
} int main()
{
freopen("fence4.in","r",stdin);
freopen("fence4.out","w",stdout); cin>>n; scanf("%lf%lf",&x,&y);
for(int i=; i<n; i++)
{
scanf("%lf%lf",&ps[i].x,&ps[i].y);
}
ps[n]=ps[]; // 判断是否符合
for(int i=; i<n; i++)
{
for(int j=; j<i-; j++)
{
if(isIntersected(ps[j],ps[j+],ps[i],ps[i+]))
{
puts("NOFENCE");
exit();
}
}
} vector<int> ans;
for(int i=; i<n; i++)
{
if(check(i))
ans.push_back(i);
} int sz=ans.size();
if(sz>= && ans[sz-]==n- && ans[sz-]==n-)
swap(ans[sz-],ans[sz-]);
printf("%d\n",sz);
for(int i=; i<sz; i++)
{
if(ans[i]==n-)
printf("%.0f %.0f %.0f %.0f\n",ps[ans[i]+].x,ps[ans[i]+].y,ps[ans[i]].x,ps[ans[i]].y);
else
printf("%.0f %.0f %.0f %.0f\n",ps[ans[i]].x,ps[ans[i]].y,ps[ans[i]+].x,ps[ans[i]+].y);
} return ;
}
USACO6.5-Closed Fences:计算几何的更多相关文章
- USACO 6.5 Closed Fences
Closed Fences A closed fence in the plane is a set of non-crossing, connected line segments with N c ...
- USACO6.4-Electric Fences:计算几何
Electric Fences Kolstad & Schrijvers Farmer John has decided to construct electric fences. He ha ...
- USACO 6.5 章节 世界上本没有龙 屠龙的人多了也便有了
All Latin Squares 题目大意 n x n矩阵(n=2->7) 第一行1 2 3 4 5 ..N 每行每列,1-N各出现一次,求总方案数 题解 n最大为7 显然打表 写了个先数值后 ...
- USACO 完结的一些感想
其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...
- 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理
题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...
- 2018.07.04 POJ 1265 Area(计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description Being well known for its highly innovative ...
- poj 3348:Cows(计算几何,求凸包面积)
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6199 Accepted: 2822 Description ...
- 懒加载session 无法打开 no session or session was closed 解决办法(完美解决)
首先说明一下,hibernate的延迟加载特性(lazy).所谓的延迟加载就是当真正需要查询数据时才执行数据加载操作.因为hibernate当中支持实体对象,外键会与实体对象关联起来.如 ...
- 4.Android 打包时出现的Android Export aborted because fatal error were founds [closed]
Android 程序开发完成后,如果要发布到互联网上供别人使用,就需要将自己的程序打包成Android 安装包文件(Android Package,APK),其扩展名为.apk.使用run as 也能 ...
随机推荐
- [置顶] Ruby,Scala和JavaScript中的函数式编程(一)
函数式编程(英语:Functional programming)或者函数程序设计,又称泛函编程,是一种编程范型,它将电脑运算视为数学上的函数计算,并且避免使用程序状态以及易变对象.函数编程语言最重要的 ...
- Appcelerator Titanium 3.x Win7 64位平台安装步骤
刚接触Android移动开发,第一次下载Titanium,第一次下载ADT,第一次看Javascript代码,N多第一次...... 慢慢摸索了一个礼拜把移动开发的工具链的配置学习了一下,抛砖引玉,但 ...
- 捕android程序崩溃日志
主要类别: package com.example.callstatus; import java.io.File; import java.io.FileOutputStream; import j ...
- Android之Notification的多种用法
我们在用手机的时候,如果来了短信,而我们没有点击查看的话,是不是在手机的最上边的状态栏里有一个短信的小图标提示啊?你是不是也想实现这种功能呢?今天的Notification就是解决这个问题的. 我们也 ...
- easyui 分页实现
1.用datagrid 做分页显示, 依据API样例,最终解决.废话不说,datagrid分页 有一个附加的分页控件 通过在datagrid中设置pagination:true 就会显示分页 当请求是 ...
- [转] 智能指针(三):unique_ptr使用简介
PS: 1. auto_ptr太不安全,可能多个auto_ptr指向一个对象,出现重复释放的问题 2. unique_ptr解决了这个问题,不允许拷贝构造函数和赋值操作符,但是!它支持移动构造函数,通 ...
- codevs 1733 聪明的打字员 (Bfs)
/* Bfs+Hash 跑的有点慢 但是codevs上时间限制10s 也ok */ #include<iostream> #include<cstdio> #include&l ...
- JAVAEE学习
首先要明白Java体系设计到得三个方面:J2SE,J2EE,J2ME(KJAVA).J2SE,Java 2 Platform Standard Edition,我们经常说到的JDK,就主要指的这个,它 ...
- hdu 1232
以前写的.....拿出来看看.... 并查集模板: #include <iostream> #include <string> using namespace std; int ...
- Ecstore获取dbschema内容?
有时候在使用dbschema的时候,需要获取dbschema的结构.例如: 那么,我们可以这样写: 这样我就能获得 称呼 这个数组