3538: [Usaco2014 Open]Dueling GPS

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 59  Solved: 36
[Submit][Status]

Description

Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take. The map of the region in which FJ lives consists of N intersections (2 <= N <= 10,000) and M directional roads (1 <= M <= 50,000). Road i connects intersections A_i (1 <= A_i <= N) and B_i (1 <= B_i <= N). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection 1, and his farm is located at intersection N. It is possible to reach the farm from his house by traveling along a series of directional roads. Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road i takes P_i units of time to traverse according to the first GPS unit, and Q_i units of time to traverse according to the second unit (each travel time is an integer in the range 1..100,000). FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection X to intersection Y) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes). Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as +2 towards the total.

给你一个N个点的有向图,可能有重边.
有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.
每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次T T
两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告.
求一种方案,1àn,最少需要受到多少次警告.

Input

* Line 1: The integers N and M. Line i describes road i with four integers: A_i B_i P_i Q_i.

Output

* Line 1: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.

Sample Input

5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5

INPUT DETAILS: There are 5 intersections and 7 directional roads. The first road connects from intersection 3 to intersection 4; the first GPS thinks this road takes 7 units of time to traverse, and the second GPS thinks it takes 1 unit of time, etc.

Sample Output

1
OUTPUT DETAILS: If FJ follows the path 1 -> 2 -> 4 -> 5, then the first GPS complains on the 1 -> 2 road (it would prefer the 1 -> 3 road instead). However, for the rest of the route 2 -> 4 -> 5, both GPSs are happy, since this is a shortest route from 2 to 5 according to each GPS.

HINT

 

Source

Silver By liyizhen2

题解:

麻烦的sb题。。。来回搞几次spfa就行了

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define inf 0x7fffffff
#define MAXN 100001
using namespace std; inline int read() {
int x = , f = ;
char ch = getchar();
while (ch < '' || ch > '') {
if (ch == '-')f = -;
ch = getchar();
}
while (ch >= '' && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x*f;
} struct edge {
int to, next, v1, v2;
} e[MAXN], d[MAXN];
int n, m, cnt, ans, u[MAXN], v[MAXN], w1[MAXN], w2[MAXN], d1[], d2[], dis[], head[], h[]; void ins(int u, int v, int w1, int w2) {
e[++cnt] = (edge){v, head[u], w1, w2};
head[u] = cnt;
} void spfa1() {
int q[MAXN], t = , w = ;
bool inq[];
memset(inq, , sizeof (inq));
memset(d1, , sizeof (d1));
d1[n] = ;
q[] = n;
inq[n] = ;
while (t <= w) {
int now = q[t++];
for (int i = head[now]; i; i = e[i].next) {
if (d1[now] + e[i].v1 < d1[e[i].to]) {
d1[e[i].to] = d1[now] + e[i].v1;
if (!inq[e[i].to]) {
q[++w] = e[i].to;
inq[e[i].to] = ;
}
}
}
inq[now] = ;
}
} void spfa2() {
int q[MAXN], t = , w = ;
bool inq[];
memset(inq, , sizeof (inq));
memset(d2, , sizeof (d2));
d2[n] = ;
q[] = n;
inq[n] = ;
while (t <= w) {
int now = q[t++];
for (int i = head[now]; i; i = e[i].next) {
if (d2[now] + e[i].v2 < d2[e[i].to]) {
d2[e[i].to] = d2[now] + e[i].v2;
if (!inq[e[i].to]) {
q[++w] = e[i].to;
inq[e[i].to] = ;
}
}
}
inq[now] = ;
}
} void spfa3() {
int q[MAXN], t = , w = ;
bool inq[];
memset(inq, , sizeof (inq));
memset(dis, , sizeof (dis));
dis[] = ;
q[] = ;
inq[] = ;
while (t <= w) {
int now = q[t++];
for (int i = h[now]; i; i = d[i].next) {
if (dis[now] + d[i].v1 < dis[d[i].to]) {
dis[d[i].to] = dis[now] + d[i].v1;
if (!inq[d[i].to]) {
q[++w] = d[i].to;
inq[e[i].to] = ;
}
}
}
inq[now] = ;
}
} int main() {
n = read();
m = read();
for (int i = ; i <= m; i++) {
u[i] = read();
v[i] = read();
w1[i] = read();
w2[i] = read();
ins(v[i], u[i], w1[i], w2[i]);
}
spfa1();
spfa2();
for (int i = ; i <= m; i++) {
d[i].to = v[i];
d[i].next = h[u[i]];
h[u[i]] = i;
if (d1[v[i]] + w1[i] > d1[u[i]])d[i].v1++;
if (d2[v[i]] + w2[i] > d2[u[i]])d[i].v1++;
}
spfa3();
printf("%d", dis[n]);
return ;
}

BZOJ3538: [Usaco2014 Open]Dueling GPS的更多相关文章

  1. 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...

  2. BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...

  3. USACO Dueling GPS's

    洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 洛谷传送门 JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs JDO ...

  4. Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题意 题目描述 Farmer John has recently purchased a new car online, ...

  5. [USACO14OPEN] Dueling GPS's[最短路建模]

    题目描述 Farmer John has recently purchased a new car online, but in his haste he accidentally clicked t ...

  6. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

  7. [USACO14OPEN]GPS的决斗Dueling GPS's

    题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...

  8. USACO 2014 US Open Dueling GPS's /// SPFA

    题目大意: 给定n个点m条边的有向图 有两个GPS 分别认为 A[i]到B[i] 的一条边的花费是P[i].Q[i] 当当前走的边不是GPS认为的最短路上的边就会被警告 即两个GPS都不认为是最短路上 ...

  9. 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)

    传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...

随机推荐

  1. validator 对象

    validate方法返回Validator对象,Validator对象有很多种有用的方法: Validator.form()验证表单是否有效,返回true/false Validator.elemen ...

  2. JAVA/PHP/C#版RSA验签--转

    本文是上一篇文章的兄弟篇,上篇文章介绍了客户端的sdk中如何基于JAVA/PHP/C#使用RSA私钥签名,然后服务端基于JAVA使用RSA公钥验签,客户端签名/服务端验签的模式只能帮助服务端检查客户端 ...

  3. uploadify上传大文件时出现404错误

    出现这个错误的话一般是IIs限制了文件大小.IIS7下的默认设置限制了上传大小.这个时候Web.Config中的大小设置也就失效了.具体步骤:1.打开IIS管理器,找到Default Web Site ...

  4. android开发之——混淆编译

    众所周知,android的apk文件是非常容易被反编译的,这样对于开发者来说,辛辛苦苦开发应用被破解是一件很令人懊恼的事情,谷歌也认识到了这一点,所以从2.3之后就为开发者提供了一个代码混淆工具pro ...

  5. 95秀-异步http请求完整过程

    最终调用时的代码     private void ansyClearApplyInfor() {         RequestParams params = new RequestParams() ...

  6. codevs 4650 破损的键盘(链表)

    /* 之前一直不重视链表 (好吧说实话主要是看着板子都是指针就怂了T.T) 这道题比较基础 应用了链表的思想 数组模拟指针 遇到的问题就是跑着跑着光标跳到前面或者跳到后面 我们用next储存每个点下一 ...

  7. 10、第十节课jq420151012

    1.点击交替显示隐藏功能  点击交替执行的:fadeToggle(1000) , slideToggle() ,  toggle(1000);      2.点击单独执行    单独显示/隐藏:sho ...

  8. Java-20个非常有用的程序片段

    下面是20个非常有用的Java程序片段,希望能对你有用. 1.字符串有整型的相互转换 String a = String.valueOf(2); //integer to numeric string ...

  9. JavaScript 客户端JavaScript之事件(DOM API 提供模块之一)

    具有交互性的JavaScript程序使用的是事件驱动的程序设计模型.   目前使用的有3种完全不同的不兼容的事件处理模型. 1.原始事件模型 (一种简单的事件处理模式) 一般把它看作0级DOM API ...

  10. preventDefault() 方法 取消掉与事件关联的默认动作

    前几天写的 响应键盘的图片切换 中, 键盘总是让浏览器滚动,为了取消掉默认的事件,使用了 preventDefault() 方法 定义和用法 preventDefault() 方法取消事件的默认动作. ...