[ACM] POJ 2253 Frogger (最短路径变形,每条通路中的最长边的最小值)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 24879 | Accepted: 8076 |
Description
by jumping.
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.
Input
stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
after each test case, even after the last one.
Sample Input
2
0 0
3 4 3
17 4
19 4
18 5 0
Sample Output
Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414
Source
解题思路:
对着题意不长的英文看了好几遍,才明确什么叫 the frog distance .
有N块石头。1—N。每块石头都有x,y坐标,青蛙一号站在第一块石头上,青蛙二号站在第二块石头上,青蛙一号想要通过这N块石头去找青蛙二号,由于青蛙一号能够踩在不论什么一块石头上,所以从第一块石头到第二块石头有非常多条路径,如果为X,在每一条路径中,都有跳跃范围(即在这条路径中,两块石头之间的最大距离),那么一共同拥有X个跳跃范围。我们要求的就是这X个跳跃范围的最小值。就是the frog distance。 比方有 有两条通路 1(4)5 (3)2 代表1到5之间的边为4, 5到2之间的边为3。那么该条通路跳跃范围(两块石头之间的最大距离)为
4, 还有一条通路 1(6) 4(1) 2 ,该条通路的跳跃范围为6, 两条通路的跳跃范围各自是 4 ,6,我们要求的就是最小的那一个跳跃范围,即4.
边的遍历和点值的更新。这个点值代表的是,从1号石头到第[i]块石头的frog distance。
用floyed算法和dijkstra算法,把更新点值的语句修改一下就能够。
代码:
floyed:
#include <iostream>
#include <cmath>
#include <iomanip>
#include <string.h>
#include <algorithm>
using namespace std;
const int maxNode=210;
double mp[maxNode][maxNode];
int nodeNum; struct P
{
int x,y;
}point[maxNode]; double dis(P a,P b)
{
return sqrt((b.y-a.y)*(b.y-a.y)+(b.x-a.x)*(b.x-a.x));
} void floyed()
{
for(int k=1;k<=nodeNum;k++)
for(int i=1;i<=nodeNum;i++)
for(int j=1;j<=nodeNum;j++)
mp[i][j]=min(mp[i][j],max(mp[i][k],mp[k][j]));//很多通路中最长边中的最小边
} int main()
{
int c=1;
while(cin>>nodeNum&&nodeNum)
{
for(int i=1;i<=nodeNum;i++)
cin>>point[i].x>>point[i].y;
for(int i=1;i<=nodeNum;i++)
for(int j=i+1;j<=nodeNum;j++)
{
mp[i][j]=mp[j][i]=dis(point[i],point[j]);
}
floyed();
cout<<"Scenario #"<<c++<<endl;
cout<<setiosflags(ios::fixed)<<setprecision(3)<<"Frog Distance = "<<mp[1][2]<<endl;
cout<<endl;
}
return 0;
}
dijkstra:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <iomanip>
#include <cmath>
using namespace std;
const int maxn=210;
const int inf=0x3f3f3f3f;
double mp[maxn][maxn];
double dist[maxn];
bool vis[maxn];
int n; struct P
{
int x,y;
}point[maxn]; double dis(P a,P b)
{
return sqrt((b.y-a.y)*(b.y-a.y)+(b.x-a.x)*(b.x-a.x));
} void dijkstra(int start)
{
memset(vis,0,sizeof(vis));
//memset(dist,inf,sizeof(dist));
for(int i=1;i<=n;i++)
dist[i]=inf;
dist[start]=0;
for(int i=1;i<=n;i++)
{
int MinNum,Min=inf;
for(int j=1;j<=n;j++)
if(!vis[j]&&dist[j]<Min)
{
MinNum=j;
Min=dist[j];
}
vis[MinNum]=1;
for(int j=1;j<=n;j++)
dist[j]=min(dist[j],max(dist[MinNum],mp[MinNum][j]));//dis[j]为从一号石头到第j号石头全部通路中最长边中的最小边
}
} int main()
{
int c=1;
while(cin>>n&&n)
{
for(int i=1;i<=n;i++)
cin>>point[i].x>>point[i].y;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
mp[i][j]=mp[j][i]=dis(point[i],point[j]);
}
dijkstra(1);
cout<<"Scenario #"<<c++<<endl;
cout<<setiosflags(ios::fixed)<<setprecision(3)<<"Frog Distance = "<<dist[2]<<endl;
cout<<endl;
}
return 0;
}
注意: double 数组 就不要轻易用memset复制了。还得考虑字节长度。
[ACM] POJ 2253 Frogger (最短路径变形,每条通路中的最长边的最小值)的更多相关文章
- poj 2253 Frogger (最短路径)
Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22557 Accepted: 7339 Descript ...
- poj 2253 Frogger (最短路变种,连通图的最长边)
题目 这里的dijsktra的变种代码是我看着自己打的,终于把代码和做法思路联系上了,也就是理解了算法——看来手跟着画一遍真的有助于理解. #define _CRT_SECURE_NO_WARNING ...
- POJ 2253 Frogger【最短路变形/最小生成树的最大权/最小瓶颈树/A到B多条路径中的最小的最长边】
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sit ...
- POJ 2253 Frogger(dijkstra变形)
http://poj.org/problem?id=2253 题意: 有两只青蛙A和B,现在青蛙A要跳到青蛙B的石头上,中间有许多石头可以让青蛙A弹跳.给出所有石头的坐标点,求出在所有通路中青蛙需要跳 ...
- poj 2253 Frogger(floyd变形)
题目链接:http://poj.org/problem?id=1797 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路 ...
- poj 2253 Frogger (最长路中的最短路)
链接:poj 2253 题意:给出青蛙A,B和若干石头的坐标,现青蛙A想到青蛙B那,A可通过随意石头到达B, 问从A到B多条路径中的最长边中的最短距离 分析:这题是最短路的变形,曾经求的是路径总长的最 ...
- 最短路(Floyd_Warshall) POJ 2253 Frogger
题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...
- poj 2253 Frogger(最短路 floyd)
题目:http://poj.org/problem?id=2253 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元 ...
- POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)
POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...
随机推荐
- Android 图片平铺效果实现的3种方法
Html中平铺的效果,那么我们都是怎么样才能实现的那,我们其实主要用到的就是api,我们一开始new一个bitmap,就可以了,那么我们就来说说第二种方法,那就在用到了xml,上面我们说了两个方法,但 ...
- Kotlin Vertx
Kotlin & Vertx Kotlin 是一门好语言,值得大家了解一下. Vertx 是一个好框架,也值得大家了解一下. Kotlin 写过js,也写过一点点go,主力一直是java.用了 ...
- 升级linux内核(2.6.32->3.10.81),安装docker
1.内核升级环境准备 #查看已经安装的和未安装的软件包组,来判断我们是否安装了相应的开发环境和开发库: yum grouplist #一般是安装这两个软件包组,这样做会确定你拥有编译时所需的一切工具 ...
- [置顶] ProcessOn:划时代性的在线作图工具
ProcessOn是一款专业作图人员的社交网络,这里汇聚很多业界专家.学者,同时他们分享的作品又形成一个庞大的知识图库,你在学习专业知识的同时还可以结交一些志同道合的新朋友. ProcessOn核心设 ...
- img 中的src的应用
在页面载入的时候,img标签的src 会跟填写的内容去载入,servlet 或者controller 或者你自己觉得希望载入的java代码. 我们这边举一个载入servlet的样例. <img ...
- Tomcat配置一个ip绑定多个域名
在网上找了半天也没找到相关的资料,都说的太含糊. 本人对tomcat下配置 一ip对多域名的方法具体例如以下,按以下配置一定能成功,经过測试了. <Host name="localho ...
- Openv2.1基本数据类型
1.Point_ template<typename _Tp> class Point_ {_Tp x, y;} 可使用的运算: pt1 = pt2 + pt3; pt1 = pt2 - ...
- .NET软件开发与常用工具清单
[工欲善其事,必先利其器]软件开发的第一步就是选择高效.智能的工具. 下面列出的工具软件能辅助提高工作效率. 开发类工具 微软.Net平台下的集成开发环境:Visual Studio. Visual ...
- BZOJ 2716: [Violet 3]天使玩偶( CDQ分治 + 树状数组 )
先cdq分治, 然后要处理点对答案的贡献, 可以以询问点为中心分成4个区域, 然后去掉绝对值(4种情况讨论), 用BIT维护就行了. --------------------------------- ...
- 百度editor调用【图片上传阿里云】
百度editor调用简单,但是图片和文件上传阿里云就有点难度了.下面我详细说一下. 百度富文本编辑器下载地址:http://ueditor.baidu.com/website/download.htm ...