题目链接

/*
*题目大意:
*求出从i到j,刚好经过k条边的最短路;
*
*矩阵乘法的应用之一(国家队论文):
*矩阵乘法不满足交换律,矩阵乘法满足结合律;
*给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值;
*把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j;
*令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点);
*类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数;
*同理,如果要求经过k步的路径数,只需要二分求出A^k即可;
*
*算法思想:
*类似于快速幂的矩阵相乘的方法,只是把相乘部分改成floyd;
*基于动态规划:d[i][j][k],表示点i到j有2^k条路径的最短路;
*INF值很奇怪,各种数据都感觉不合适,换了很多次才过;
**/
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<cstdio>
#include<climits>
#include<algorithm>
using namespace std; const int MAXN=222;
const int MAXM=1111;
//const int INF=0xfffffff;
const int INF=999999999; int f[MAXM];
int cnt;
int map[MAXN][MAXN];
int res[MAXN][MAXN],tmp[MAXN][MAXN];//res[i][j]表示i与j之间的最短路(之间有n条路),这个n是时刻变化的 int N,T,S,E;
void solve(int n)//就像快速幂的矩阵连乘,只是把相乘部分改成floyd
{
while(n)
{
if(n%2)//n为奇数时,n=2^a+2^a+b,这里补上b步,后面计算2*2^a步;
{
for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
tmp[i][j]=INF; for(int k=1; k<=cnt; k++)
for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
if(tmp[i][j]>res[i][k]+map[k][j])
tmp[i][j]=res[i][k]+map[k][j]; for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
res[i][j]=tmp[i][j];
} for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
tmp[i][j]=INF;
for(int k=1; k<=cnt; k++)
for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
if(tmp[i][j]>map[i][k]+map[k][j])
tmp[i][j]=map[i][k]+map[k][j]; for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
map[i][j]=tmp[i][j]; n=n/2;
}
return;
} int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
while(~scanf("%d%d%d%d",&N,&T,&S,&E))
{
for(int i=0; i<=MAXN; i++)
{
for(int j=0; j<=MAXN; j++)
map[i][j]=INF,res[i][j]=INF;
res[i][i]=0;
}
memset(f,0,sizeof(f));
cnt=0;
int u,v,w;
for(int i=1; i<=T; i++)
{
scanf("%d%d%d",&w,&u,&v);
if(f[u]==0)
{
cnt++;
f[u]=cnt;
}
if(f[v]==0)
{
cnt++;
f[v]=cnt;
}
map[f[u]][f[v]]=w;
map[f[v]][f[u]]=w;
}
solve(N);
printf("%d\n",res[f[S]][f[E]]);
}
return 0;
}

图论专题训练1-D(K步最短路,矩阵连乘)的更多相关文章

  1. POJ --- 3613 (K步最短路+矩阵快速幂+floyd)

    Cow Relays   Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided ...

  2. 专题训练——[kuangbin带你飞]最短路练习

    最短路练习 0. Til the Cows Come Home  POJ - 2387 完美的模板题 //#include<Windows.h> #include<iostream& ...

  3. luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵

    题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...

  4. poj3613Cow Relays——k边最短路(矩阵快速幂)

    题目:http://poj.org/problem?id=3613 题意就是求从起点到终点的一条恰好经过k条边的最短路: floyd+矩阵快速幂,矩阵中的第i行第j列表示从i到j的最短路,矩阵本身代表 ...

  5. DP专题训练之HDU 2955 Robberies

    打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...

  6. dp专题训练

    ****************************************************************************************** 动态规划 专题训练 ...

  7. hdu 2157 从a点走到b点刚好k步的方案数是多少 (矩阵快速幂)

    n个点 m条路 询问T次 从a点走到b点刚好k步的方案数是多少 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存 ...

  8. 经典矩阵快速幂之二-----hdu2157(走k步到

    题意:(中问题,题意很简单 思路:a走k步到b,其实就是A^k,ans.mat[a][b]就是答案. 其实就是离散的邻接矩阵那个P(不想证明,逃 #include<cstdio> #inc ...

  9. 正睿OI国庆DAY2:图论专题

    正睿OI国庆DAY2:图论专题 dfs/例题 判断无向图之间是否存在至少三条点不相交的简单路径 一个想法是最大流(后来说可以做,但是是多项式时间做法 旁边GavinZheng神仙在谈最小生成树 陈主力 ...

随机推荐

  1. myBatis学习(9):一级缓存和二级缓存

    正如大多数持久层框架一样,MyBatis同样提供了一级缓存和二级缓存的支持 1. MyBatis一级缓存基于PerpetualCache的HashMap本地缓存,其存储作用域为 Session,默认情 ...

  2. hdu 2817 A sequence of numbers(快速幂)

    Problem Description Xinlv wrote some sequences on the paper a long time ago, they might be arithmeti ...

  3. Fiddler 抓取eclipse中的请求

    Fiddler 抓取eclipse中的请求 代码中添加 System.setProperty("http.proxySet", "true"); System. ...

  4. [Qt] searchBox 搜索框实现

    [Qt] searchBox 搜索框实现 也就是在lineEdit中加入button.在搜索框的右边会有个小小的搜索图标,输入内容之后,搜索的图标会变成叉叉. 类中的IconHelper见我的另一篇博 ...

  5. [RxJS] Combining Streams with CombineLatest

    Two streams often need to work together to produce the values you’ll need. This lesson shows how to ...

  6. [Unity3D]蓝港面试题

    1. 请简述值类型与引用类型的差别 答: 差别:1.值类型存储在内存栈中,引用类型数据存储在内存堆中,而内存单元中存放的是堆中存放的地址.2.值类型存取快,引用类型存取慢.3.值类型表示实际数据,引用 ...

  7. 为iPhone 6设计自适应布局

    Apple从iOS 6加入了Auto Layout后开始就比较委婉的开始鼓励.建议开发者使用自适应布局,但是到目前为止,我感觉大多数开发者一直在回避这个问题,不管是不是由于历史原因造成的,至少他们在心 ...

  8. Java清洁:终结处理和垃圾回收

    一般情况:Java有垃圾回收机制负责回收无用对象占据的内存资源. 特殊情况:假定你的对象(并非使用new)获得一块特殊的内存区域,由于垃圾回收器只知道释放那些经由new分配的内存,所以它不知道如何释放 ...

  9. Kerberos-KDC

    Kerberos提供一种较好的解决方案,它是由MIT发明的,Kerberos建立了一个安全的.可信任的密钥分发中心(KDC, Key Distribution Center).Kerberos是一种认 ...

  10. ORACLE触发器的管理与实际应用【weber出品】

    一.INSTEAD OF触发器 对于简单的视图可以执行INSERT,UPDATE和DELETE操作,但是对于复杂视图,不允许直接执行INSERT,UPDATE,DELETE操作,当视图出现以下任何一种 ...