题目链接

/*
*题目大意:
*求出从i到j,刚好经过k条边的最短路;
*
*矩阵乘法的应用之一(国家队论文):
*矩阵乘法不满足交换律,矩阵乘法满足结合律;
*给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值;
*把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j;
*令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点);
*类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数;
*同理,如果要求经过k步的路径数,只需要二分求出A^k即可;
*
*算法思想:
*类似于快速幂的矩阵相乘的方法,只是把相乘部分改成floyd;
*基于动态规划:d[i][j][k],表示点i到j有2^k条路径的最短路;
*INF值很奇怪,各种数据都感觉不合适,换了很多次才过;
**/
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<cstdio>
#include<climits>
#include<algorithm>
using namespace std; const int MAXN=222;
const int MAXM=1111;
//const int INF=0xfffffff;
const int INF=999999999; int f[MAXM];
int cnt;
int map[MAXN][MAXN];
int res[MAXN][MAXN],tmp[MAXN][MAXN];//res[i][j]表示i与j之间的最短路(之间有n条路),这个n是时刻变化的 int N,T,S,E;
void solve(int n)//就像快速幂的矩阵连乘,只是把相乘部分改成floyd
{
while(n)
{
if(n%2)//n为奇数时,n=2^a+2^a+b,这里补上b步,后面计算2*2^a步;
{
for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
tmp[i][j]=INF; for(int k=1; k<=cnt; k++)
for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
if(tmp[i][j]>res[i][k]+map[k][j])
tmp[i][j]=res[i][k]+map[k][j]; for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
res[i][j]=tmp[i][j];
} for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
tmp[i][j]=INF;
for(int k=1; k<=cnt; k++)
for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
if(tmp[i][j]>map[i][k]+map[k][j])
tmp[i][j]=map[i][k]+map[k][j]; for(int i=1; i<=cnt; i++)
for(int j=1; j<=cnt; j++)
map[i][j]=tmp[i][j]; n=n/2;
}
return;
} int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
while(~scanf("%d%d%d%d",&N,&T,&S,&E))
{
for(int i=0; i<=MAXN; i++)
{
for(int j=0; j<=MAXN; j++)
map[i][j]=INF,res[i][j]=INF;
res[i][i]=0;
}
memset(f,0,sizeof(f));
cnt=0;
int u,v,w;
for(int i=1; i<=T; i++)
{
scanf("%d%d%d",&w,&u,&v);
if(f[u]==0)
{
cnt++;
f[u]=cnt;
}
if(f[v]==0)
{
cnt++;
f[v]=cnt;
}
map[f[u]][f[v]]=w;
map[f[v]][f[u]]=w;
}
solve(N);
printf("%d\n",res[f[S]][f[E]]);
}
return 0;
}

图论专题训练1-D(K步最短路,矩阵连乘)的更多相关文章

  1. POJ --- 3613 (K步最短路+矩阵快速幂+floyd)

    Cow Relays   Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided ...

  2. 专题训练——[kuangbin带你飞]最短路练习

    最短路练习 0. Til the Cows Come Home  POJ - 2387 完美的模板题 //#include<Windows.h> #include<iostream& ...

  3. luogu题解 P2886 【牛继电器Cow Relays】-经过K边最短路&矩阵

    题目链接: https://www.luogu.org/problemnew/show/P2886 Update 6.16 最近看了下<算法导论>,惊奇地发现在在介绍\(APSP\) \( ...

  4. poj3613Cow Relays——k边最短路(矩阵快速幂)

    题目:http://poj.org/problem?id=3613 题意就是求从起点到终点的一条恰好经过k条边的最短路: floyd+矩阵快速幂,矩阵中的第i行第j列表示从i到j的最短路,矩阵本身代表 ...

  5. DP专题训练之HDU 2955 Robberies

    打算专题训练下DP,做一道帖一道吧~~现在的代码风格完全变了~~大概是懒了.所以.将就着看吧~哈哈 Description The aspiring Roy the Robber has seen a ...

  6. dp专题训练

    ****************************************************************************************** 动态规划 专题训练 ...

  7. hdu 2157 从a点走到b点刚好k步的方案数是多少 (矩阵快速幂)

    n个点 m条路 询问T次 从a点走到b点刚好k步的方案数是多少 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存 ...

  8. 经典矩阵快速幂之二-----hdu2157(走k步到

    题意:(中问题,题意很简单 思路:a走k步到b,其实就是A^k,ans.mat[a][b]就是答案. 其实就是离散的邻接矩阵那个P(不想证明,逃 #include<cstdio> #inc ...

  9. 正睿OI国庆DAY2:图论专题

    正睿OI国庆DAY2:图论专题 dfs/例题 判断无向图之间是否存在至少三条点不相交的简单路径 一个想法是最大流(后来说可以做,但是是多项式时间做法 旁边GavinZheng神仙在谈最小生成树 陈主力 ...

随机推荐

  1. 一个session已经ACTIVE20多小时,等待事件SQL*Net more data from client

    问题描述: 一个session已经ACTIVE20多小时,等待事件SQL*Net more data from client 有一人session,从昨天上午11点多登陆(v$session.logi ...

  2. java_重写与重载的区别

    重写与重载的区别 重载(Overloading)和重写(Overriding)是Java中两个比较重要的概念.但是对于新手来说也比较容易混淆.本文通过两个简单的例子说明了他们之间的区别. 定义 重载 ...

  3. 20 个非常棒的jQuery内容滑动插件

    Wow Slider  WOW Slider是一款小巧易用的网页滑块设计.该软件内置大量的模版和工具,让你轻松设计出完美的视觉效果.他还可以帮助用户在短时间内创造出梦幻般的滑块,而无需编码和图像编辑, ...

  4. 3DShader之移位贴图(Displacement Mapping)

    我们知道法线贴图是只是改了物体的法线属性,用来计算光照,但是并没有改变物体本身的网格.但是移位贴图就不一样了,它会移动物体的顶点.我用移位贴图做了个海洋,好了,上了图再讲: 注意看海的边缘的顶点,已经 ...

  5. Android-它们的定义Dialog

    Android-它们的定义Dialog 2014年4月27日 星期天 天气晴朗 心情平静 本篇博文来分享一个也是开发中常常须要用到的功能-自己定义对话框,这里我用到了Android中的图形资源shap ...

  6. Ubuntu 12.04设置打开远程桌面登录1

    teamviewer_linux.deb sudo dpkg --install teamviewer_linux.deb

  7. zookeeper应用——集中配置管理系统的实现

    http://blog.csdn.net/huangfengxiao/article/details/8844239

  8. discuzx3.2伪静态

    首先,我们要新建一个名为.htaccess的文件,文件名为空白,这点很重要.很多人无法新建这个文件,在这里教大家如何新建没有名字的文件. 新建一个TXT文本,名字先默认.然后打开这个文本,然后把我们的 ...

  9. asp.net 正则表达式

    在平时的开发中常常用到替换法:  普通的字符串替换可以使用string.replace(string,string),但是比较难解决HTML文本的替换. 经我几番查找,终也找出解决办法:正则匹配替换. ...

  10. mercurial(Hg) Server 搭建 过程记录

    mercurial(Hg) Server 搭建 过程记录 1.  环境说明 只是测试搭建,环境为本机开发环境:win 8.1 + IIS8.5 软件准备: 2.  软件安装 先安装Python2.7, ...