Sorting It All Out
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 39602   Accepted: 13944

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y.

Sorted sequence cannot be determined.

Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

Source

 
分析:
有向图判环:拓扑排序
无向图判环:并查集
 
本题需要进行m次的拓扑排序
拓扑排序判环:拓扑之后,如果存在没有入队的点,那么该点一定是环上的点
拓扑路径的唯一性确定:队中某一时刻存在两个元素,则至少有两条不同的拓扑路径
 
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
} #define max_v 55
int indgree[max_v];
int temp[max_v];
int G[max_v][max_v];
int tp[max_v];
int n,m;
queue<int> q;
int tpsort()
{
while(!q.empty())
q.pop();
for(int i=;i<=n;i++)
{
indgree[i]=temp[i];
if(indgree[i]==)
q.push(i);
} int c=,p;
int flag=;
while(!q.empty())
{
if(q.size()>)
flag=;
p=q.front();
q.pop();
tp[++c]=p;
for(int i=;i<=n;i++)
{
if(G[p][i])
{
indgree[i]--;
if(indgree[i]==)
q.push(i);
}
}
}
/*
拓扑完之后,存在没有入队的点,那么该点就一定是环上的
*/
if(c!=n)//存在环
return ;
else if(flag)//能拓扑但存在多条路
return ;
return -;//能拓扑且存在唯一拓扑路径
}
int main()
{
int x,y;
char c1,c2;
while(~scanf("%d %d",&n,&m))
{
if(n==&&m==)
break;
memset(G,,sizeof(G));
memset(temp,,sizeof(temp));
memset(tp,,sizeof(tp));
int flag1=,index1=;//是否有环及环的位置
int flag2=,index2=;//能否拓扑和拓扑的位置
for(int i=;i<=m;i++)
{
getchar();
scanf("%c<%c",&c1,&c2);
x=c1-'A'+;
y=c2-'A'+;
if(flag1==&&flag2==)
{
if(G[y][x])//环的一种情况
{
flag1=;
index1=i;
continue;
}
if(G[x][y]==)//预防重边
{
G[x][y]=;
temp[y]++;
}
int k=tpsort();
if(k==)//存在环
{
flag1=;
index1=i;
continue;
}else if(k==-)//存在唯一拓扑路径
{
flag2=;
index2=i;
}
}
}
if(flag1==&&flag2==)
{
printf("Sorted sequence cannot be determined.\n");
}else if(flag1)
{
printf("Inconsistency found after %d relations.\n",index1);
}else if(flag2)
{
printf("Sorted sequence determined after %d relations: ",index2);
for(int i=;i<=n;i++)
{
printf("%c",tp[i]+'A'-);
}
printf(".\n");//!!!注意还有个点...
}
}
return ;
}

POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)的更多相关文章

  1. Legal or Not(拓扑排序判环)

    http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Others)   ...

  2. LightOJ1003---Drunk(拓扑排序判环)

    One of my friends is always drunk. So, sometimes I get a bit confused whether he is drunk or not. So ...

  3. HDU1811 拓扑排序判环+并查集

    HDU Rank of Tetris 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1811 题意:中文问题就不解释题意了. 这道题其实就是一个拓扑排序判圈 ...

  4. [bzoj3012][luogu3065][USACO12DEC][第一!First!] (trie+拓扑排序判环)

    题目描述 Bessie has been playing with strings again. She found that by changing the order of the alphabe ...

  5. Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)

    Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megaby ...

  6. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

  7. [ACM] POJ 1094 Sorting It All Out (拓扑排序)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26801   Accepted: 92 ...

  8. poj 1094 Sorting It All Out 拓补排序

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  9. HDU 3342 Legal or Not(有向图判环 拓扑排序)

    Legal or Not Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. Code Signal_练习题_growingPlant

    Each day a plant is growing by upSpeed meters. Each night that plant's height decreases by downSpeed ...

  2. JavaScript高级编程——Array数组迭代(every()、filter()、foreach()、map()、some(),归并(reduce() 和reduceRight() ))

    JavaScript高级编程——Array数组迭代(every().filter().foreach().map().some(),归并(reduce() 和reduceRight() )) < ...

  3. python短信发送

    '''以云之讯平台为例:''' url = 'https://open.ucpaas.com/ol/sms/sendsms' # 账户sidsid = 'f0ad70b276a8b63eb44f415 ...

  4. js 函数中形参与实参的关系

    函数中形参与实参的关系 对于形参和实参的定义,在 权威指南中有着明确的定义.但是,我们更在意的是它们之间的关系,到底形参会不会影响到实参? 形参到底会不会影响到实参? 对于这个问题的答案,请先看以下两 ...

  5. KCF的弊端

      一.前情提要 如果你对目标跟踪和KCF是什么东西还不了解的话欢迎你看前一篇博文KCF入门详解:https://www.cnblogs.com/jins-note/p/10215511.html  ...

  6. 网络基础 利用vnc viewer访问在vmware虚拟机上的linux

    利用vnc viewer访问在vmware虚拟机上的linux by:授客 QQ:1033553122 Linux服务器为架设在VMware之上的虚拟机,那么可以直接使用VMware自带的vnc,而不 ...

  7. C#取得控制台应用程序的根目录方法 判断文件夹是否存在,不存在就创建

    取得控制台应用程序的根目录方法1:Environment.CurrentDirectory 取得或设置当前工作目录的完整限定路径2:AppDomain.CurrentDomain.BaseDirect ...

  8. 【Python】爬取网站图片

    import requests import bs4 import urllib.request import urllib import os hdr = {'User-Agent': 'Mozil ...

  9. Google 和 Facebook 如何大规模处理 IT 事件管理 —— 2016 SRE 大会之我见

    [编者按]本文作者为 Maria Arbisman,主要介绍 Google 与 Facebook 两大巨头是如何大规模处理 IT 事件管理.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 2 ...

  10. MySQL主从复制日常管理维护篇

    日常工作中,我们需要经常进行一些监控和管理维护工作,以便能及时发现一些复制中的问题,并尽快解决,以此来保证复制能够正常工作 1.查看从库状态 MySQL [(none)]> show slave ...