这个系列主要是记一下目前效率较高或者比较出名的一些算法.

Karatsuba multiplication:

x=5678   then: a=56  b=67

y=1234           c=12 d=34

setps:

1:   a*c = 672    ①

2:   b*d=2652   ②

3:  (a+b)(c+d)=6164  ③

4:  ③-②-①=2840

5:  6720000 + 2652+284000 = 7006652

Recursive algorithm:

whrite: x= 10n/2 a+b   y= 10 n/2 c+d

then x*y = 10nac+10n/2(ad+bc)+bd   这里,我们需要做4次乘法,在计算机中的cost并不理想,所以用到一个

Gauss's trick:

step1: recursively compute ac

step2: recurisively compute bd

step3: recurisively compute (a+c)*(c+d)  then

ad+bc = (a+c)*(c+d) - ac - bd

upshot:only 3 recursive multiply calls.

note: 这里的n表示位数, 比如x是6位数,n=6, n/2=3,如果x=7,则n/2取4.

保留一个问题,这个是我比较困惑的, 如果x和y位数相差比较大这个算法还能不能用, 比如x是7位数,y是三位数,希望大神解答!

在计算机里,少做一次乘法的效率会提高不少,对于给定的n位大数,算法的复杂度不超过3nlog3 ≈ 3n1.585, 一般给定N位数,复杂度是n平方。

Algorithm(1) - Karatsuba multiplication的更多相关文章

  1. [MIT6.006] 11. Integer Arithmetic, Karatsuba Multiplication 整型算术,Karatsuba乘法

    很多人不喜欢√2的表达,他们认为它不是一个数. 一.卡塔兰数 Catalan numbers 在数方面上,有个著名的数叫卡塔兰数 Catalan numbers,它是组合数学中一个常在各种计数问题中出 ...

  2. Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了

    作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...

  3. Converting from Decimal Notation to Binary Notation for Fractions

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION Therefore, the conver ...

  4. 基于 CPython 解释器,为你深度解析为什么Python中整型不会溢出

    前言 本次分析基于 CPython 解释器,python3.x版本 在python2时代,整型有 int 类型和 long 长整型,长整型不存在溢出问题,即可以存放任意大小的整数.在python3后, ...

  5. 《python解释器源码剖析》第2章--python中的int对象

    2.0 序 在所有的python内建对象中,整数对象是最简单的对象.从对python对象机制的剖析来看,整数对象是一个非常好的切入点.那么下面就开始剖析整数对象的实现机制 2.1 初识PyLongOb ...

  6. Booth Multiplication Algorithm [ASM-MIPS]

    A typical implementation Booth's algorithm can be implemented by repeatedly adding (with ordinary un ...

  7. CSharp Algorithm - Replace multiplication operator with a method

    /* Author: Jiangong SUN */ How to replace multiplication operation with a method? For example, you h ...

  8. algorithm@ Divide two integers without using multiplication, division and mod operator. (Bit Operation)

    #include<bits/stdc++.h> using namespace std; int divide(int dividend, int divisor) { long long ...

  9. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

随机推荐

  1. C++基础知识(3)

    C++内置的数据类型:基本类型.复合类型 基本类型:整型,浮点型,字符型 复合类型:数组,字符串,指针和结构 复合数据类型是在基本数据类型的基础上创建的 要知道系统中整数的最大长度,可以在程序中使用C ...

  2. ace -- about

    Built for Code Ace is an embeddable code editor written in JavaScript. It matches the features and p ...

  3. mysql新监语句需要前面加SET FOREIGN_KEY_CHECKS=0;

    SET FOREIGN_KEY_CHECKS=0; -- ------------------------------ Table structure for guestbook-- -------- ...

  4. Linux内核分析——第六周学习笔记20135308

    第六周 进程的描述和进程的创建 一.进程描述符task_struct数据结构 1.操作系统三大功能 进程管理 内存管理 文件系统 2.进程控制块PCB——task_struct 也叫进程描述符,为了管 ...

  5. Hadoop 5 Hbase 遇到的问题

    hbase伪分布式配置完成后: 在bin/hbase shell 进行create操作时出现:Can't get master address from ZooKeeper; znode data = ...

  6. extjs几个奇怪的错误

    在用Extjs进行网页开发的时候,遇见了一下两个错误,这两个错误的位置用firebug调试显示在extjs-all.js Ext.resetElement is undefined g.el is n ...

  7. Apache修改了配置文件中的路径后,登录该地址网页出现问题 (其中介绍了selinux的域和安全上下文)

    默认的网站数据存放在: /var/www/html 首页名称: index.html Apache服务程序的主配置文件: /etc/httpd/conf/httpd.conf (若是将  119  行 ...

  8. 如何用Qt自动拷贝exe依赖的dll

    QT生成的.exe文件不能运行的解决办法 之前的数独项目的GUI,当我的Qt项目生成exe时,由于缺少了相关的依赖dll文件,打开会一直报缺少依赖文件的错: 然后一开始我到安装的Qt文件夹里把这些有Q ...

  9. Final发布点评

    1.  约跑App——nice!:为改进演示效果,本组使用摄像头实时采集投影的方式展示其作品,是一种演示的创新.本组重点放在了修改上次来着其他组发现的bug,不过新功能上好像没有加入多少,可能是保证软 ...

  10. [转帖][Bash Shell] Shell学习笔记

    [Bash Shell] Shell学习笔记 http://www.cnblogs.com/maybe2030/p/5022595.html  阅读目录 编译型语言 解释型语言 5.1 作为可执行程序 ...