Algorithm(1) - Karatsuba multiplication
这个系列主要是记一下目前效率较高或者比较出名的一些算法.
Karatsuba multiplication:
x=5678 then: a=56 b=67
y=1234 c=12 d=34
setps:
1: a*c = 672 ①
2: b*d=2652 ②
3: (a+b)(c+d)=6164 ③
4: ③-②-①=2840
5: 6720000 + 2652+284000 = 7006652
Recursive algorithm:
whrite: x= 10n/2 a+b y= 10 n/2 c+d
then x*y = 10nac+10n/2(ad+bc)+bd 这里,我们需要做4次乘法,在计算机中的cost并不理想,所以用到一个
Gauss's trick:
step1: recursively compute ac
step2: recurisively compute bd
step3: recurisively compute (a+c)*(c+d) then
ad+bc = (a+c)*(c+d) - ac - bd
upshot:only 3 recursive multiply calls.
note: 这里的n表示位数, 比如x是6位数,n=6, n/2=3,如果x=7,则n/2取4.
保留一个问题,这个是我比较困惑的, 如果x和y位数相差比较大这个算法还能不能用, 比如x是7位数,y是三位数,希望大神解答!
在计算机里,少做一次乘法的效率会提高不少,对于给定的n位大数,算法的复杂度不超过3nlog3 ≈ 3n1.585, 一般给定N位数,复杂度是n平方。
Algorithm(1) - Karatsuba multiplication的更多相关文章
- [MIT6.006] 11. Integer Arithmetic, Karatsuba Multiplication 整型算术,Karatsuba乘法
很多人不喜欢√2的表达,他们认为它不是一个数. 一.卡塔兰数 Catalan numbers 在数方面上,有个著名的数叫卡塔兰数 Catalan numbers,它是组合数学中一个常在各种计数问题中出 ...
- Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了
作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...
- Converting from Decimal Notation to Binary Notation for Fractions
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION Therefore, the conver ...
- 基于 CPython 解释器,为你深度解析为什么Python中整型不会溢出
前言 本次分析基于 CPython 解释器,python3.x版本 在python2时代,整型有 int 类型和 long 长整型,长整型不存在溢出问题,即可以存放任意大小的整数.在python3后, ...
- 《python解释器源码剖析》第2章--python中的int对象
2.0 序 在所有的python内建对象中,整数对象是最简单的对象.从对python对象机制的剖析来看,整数对象是一个非常好的切入点.那么下面就开始剖析整数对象的实现机制 2.1 初识PyLongOb ...
- Booth Multiplication Algorithm [ASM-MIPS]
A typical implementation Booth's algorithm can be implemented by repeatedly adding (with ordinary un ...
- CSharp Algorithm - Replace multiplication operator with a method
/* Author: Jiangong SUN */ How to replace multiplication operation with a method? For example, you h ...
- algorithm@ Divide two integers without using multiplication, division and mod operator. (Bit Operation)
#include<bits/stdc++.h> using namespace std; int divide(int dividend, int divisor) { long long ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
随机推荐
- 记录Appium-desktop踩过的坑could not find devices
最近了解到一个自动化入门的新工具appium-desktop,看网上各种文章,感觉这个工具是很简单的一个入门级工具,下载试用了一下. 官网下载,输入网址appium.io,点击下载. 一路傻瓜式安装, ...
- 人类又被AI碾压,这次是星际争霸
还记得2017年,那个血洗围棋界的“阿尔法狗”吗? 这个由谷歌旗下 DeepMind 公司开发的 AI ,对阵世界顶尖围棋选手,打出完全碾压式的战绩: AlphaGo vs. 樊麾 - 5 : ...
- 一个java实现的简单的4则运算器
有些基础知识有欠缺,补一下,顺便练习一下java import com.sun.deploy.util.ArrayUtil; import java.util.*; public class Main ...
- Error:java: 无效的源发行版: 1.8
出现这种情况是gradle或者maven的版本与 本地电脑jdk不一致,具体看一下链接 http://blog.csdn.net/leixingbang1989/article/details/519 ...
- win7下php7.1运行getenv('REMOTE_ADDR')fastcgi停止运行
// 本地环境phpStudy, PHP7.1.13nts+nginx,切换Apache也不行//ps:php版本<=7.0正常echo "<pre>";// $ ...
- 【HTML5】中的一些新标签
1.element.classList 获取该元素的所有类名,并以数组方式列出. 增加类名:element.classList.add(class1,class2); //可添加一个或多个. 去除类名 ...
- linux命令行打包、压缩及解压缩
使用命令: tar 打包: tar -zcvf 目标文件 源文件或文件夹 目标文件为要打包成的文件的文件名, 打包后文件的 格式取决于目标文件的后缀名 单文件或文件夹打包 tar -zcvf ind ...
- BZOJ2753 SCOI2012滑雪与时间胶囊(最小生成树)
首先显然可以把所有能到的点拎出来建个新图,这样第一问也就做好了. 剩下的部分似乎是一个裸的最小树形图.但显然这个东西是没什么学的必要的并且不太能跑过去. 考虑建出来的图有什么性质.可以发现如果没有高度 ...
- 【NOIP 2018】保卫王国(动态dp / 倍增)
题目链接 这个$dark$题,嗯,不想说了. 法一:动态$dp$ 虽然早有听闻动态$dp$,但到最近才学,如果你了解动态$dp$,那就能很轻松做出这道题了.故利用这题在这里科普一下动态$dp$的具体内 ...
- CF1110D Jongmah(DP)
题目链接:CF原网 洛谷 题目大意:有 $n$ 个数,每个都不超过 $m$.一个三元组 $(a,b,c)$ 是合法的当且仅当 $a=b=c$ 或者 $a+1=b=c-1$.每个数只能用一次.问最多能 ...