There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.


Figure 1

Figure 1 illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:

1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.

2. PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (<= 100), always an even number, is the maximum capacity of each station; N (<= 500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci(i=1,...N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0->S1->...->Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0
题目大意是找一条最短路径,(走每条路径,都要把节点调整为最佳状态,带走或增加一些车子)有多条最短路径时,输出从管理中心最少带出的车子。带出的车子相同时,输出带回最少的车子。
dijkstra求最短路径有一些拓展问题:如何求出有多少条最短路径;如何输出路径;包含一些附加信息是我的处理
有多少条最短路径和输出最短路径可以归为一种解法。我们定义vector<int>q[n],q[i].size()表示最短路径的个数。通过dfs可以输出最短路径。
对于这个问题,我们还有限制条件。所以对所有的最短路径做一遍dfs,保存答案即可。
下面是代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
int e[][];
int dis[];
int c[];
bool vis[];
const int inf=0x3f3f3f3f;
int cmax,n,s,m;
vector<int>q[];
vector<int>path,temppath;
int mintake,minback;
void dijkstra(int d)
{
memset(vis,,sizeof(vis));
dis[]=;
for(int i=;i<=n;i++)
dis[i]=e[][i];
while()
{
int maxx=inf,tmp=-;
for(int i=;i<=n;i++)
{
if(vis[i]==&&dis[i]<maxx)
{
maxx=dis[i];
tmp=i;
}
}
vis[tmp]=;
if(tmp==-)
break;
for(int i=;i<=n;i++)
{
if(vis[i]==&&e[tmp][i]!=inf)
{
if(dis[i]>dis[tmp]+e[tmp][i])
{
q[i].clear();
q[i].push_back(tmp);
dis[i]=dis[tmp]+e[tmp][i];
}
else if(dis[i]==dis[tmp]+e[tmp][i])
{
q[i].push_back(tmp);
}
}
}
}
}
void dfs(int v)
{
temppath.push_back(v);
if(v==)
{
int back=,take=;
for(int i=temppath.size()-;i>=;i--)
{
int id=temppath[i];
if(c[id]>)
back+=c[id]; //需要带走的
else
{
if(back>(-c[id]))//如果之前带走的大于当前需要的
{
back+=c[id];
}
else
{
take+=-(back+c[id]);
back=;
}
}
}
if(take<mintake)
{
mintake=take;
minback=back;
path=temppath;
}
else if(take==mintake&&back<minback)
{
mintake=take;
minback=back;
path=temppath;
}
temppath.pop_back();
return;
}
for(int i=;i<q[v].size();i++)
dfs(q[v][i]);
temppath.pop_back();
}
int main()
{
mintake=inf;minback=inf;
scanf("%d%d%d%d",&cmax,&n,&s,&m);
int a,b,cost;
memset(e,inf,sizeof(e));
for(int i=;i<=n;i++)
{
scanf("%d",&c[i]);
c[i]-=cmax/;
} for(int i=;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&cost);
e[a][b]=e[b][a]=cost;
}
dijkstra(s);
dfs(s);
printf("%d 0",mintake);
for(int i=path.size()-;i>=;i--)
cout<<"->"<<path[i];
cout<<" "<<minback<<endl;
}

类似的问题还有PAT1003,也是多条最短路径的限制问题。

PAT1018 (dijkstra+dfs)的更多相关文章

  1. PAT-1018 Public Bike Management(dijkstra + dfs)

    1018. Public Bike Management There is a public bike service in Hangzhou City which provides great co ...

  2. 【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

    题目描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径( ...

  3. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  4. 天梯赛练习 L3-011 直捣黄龙 (30分) dijkstra + dfs

    题目分析: 本题我有两种思路,一种是只依靠dijkstra算法,在dijkstra部分直接判断所有的情况,以局部最优解得到全局最优解,另一种是dijkstra + dfs,先计算出最短距离以及每个点的 ...

  5. 1030 Travel Plan Dijkstra+dfs

    和1018思路如出一辙,先求最短路径,再dfs遍历 #include <iostream> #include <cstdio> #include <vector> ...

  6. patest_1003_Emergency (25)_(dijkstra+dfs)

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  7. 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs

    前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...

  8. PAT 1111 Online Map[Dijkstra][dfs]

    1111 Online Map(30 分) Input our current position and a destination, an online map can recommend seve ...

  9. 【PAT甲级】1087 All Roads Lead to Rome (30 分)(dijkstra+dfs或dijkstra+记录路径)

    题意: 输入两个正整数N和K(2<=N<=200),代表城市的数量和道路的数量.接着输入起点城市的名称(所有城市的名字均用三个大写字母表示),接着输入N-1行每行包括一个城市的名字和到达该 ...

随机推荐

  1. kong API gateway

    参考:https://www.cnblogs.com/chenjinxi/p/8724564.html 一.简介 Kong,是由Mashape公司开源的,基于Nginx的API gateway. 二. ...

  2. POI解析大量数据

    参考:https://blog.csdn.net/whandgdh/article/details/80267674

  3. idea 设置某项目路径下的文件在点击浏览器预览时的前缀

    01,我们在开发 HTML 页面的时候,可以通过点击右上角的浏览器图标,直接打开浏览器访问,大大方便了开发 02,但是我们在开发 PHP 的时候,一般会自己安装集成环境或者编译环境,从上面的截图我们会 ...

  4. keepalived nginx 双机热备图文讲解

    http://blog.csdn.net/wanglei_storage/article/details/51175418

  5. day34-常见内置模块三(re模块)

    re模块 1.什么是正则 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则.(在Python中)它内嵌在Python中,并 ...

  6. Delphi Qjson

    使用QJSON解析数据: JSon 字符串: {"Code":1,"Msg":"", "Data":[{"Ne ...

  7. git使用 从远程库克隆和更新到本地

    从远程库克隆到本地. git clone git@github.com:kingbook/Framework.git 或 git clone http://github.com/kingBook/Fr ...

  8. C++17尝鲜:编译期 if 语句

    Constexpr If(编译期 if 语句) 以 if constexpr 打头的 if 语句被称为 Constexpr If. Constexpr If 是C++17所引入的新的语法特性.它为C+ ...

  9. [cocos2d-x]游戏开发基础(图)

    FreeMind的.mm文件下载: http://yunpan.cn/cfL3f5PXRfikP (提取码:90f1)

  10. android Button、TabLayout英文自动改小写为大写的问题

    如果是Button自动大写问题,直接设置Button的 textAllCaps="false" 即可: 如果是TabLayout出现全大写问题,先在style.xml加入属性: & ...