There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.


Figure 1

Figure 1 illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:

1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.

2. PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (<= 100), always an even number, is the maximum capacity of each station; N (<= 500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci(i=1,...N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0->S1->...->Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0
题目大意是找一条最短路径,(走每条路径,都要把节点调整为最佳状态,带走或增加一些车子)有多条最短路径时,输出从管理中心最少带出的车子。带出的车子相同时,输出带回最少的车子。
dijkstra求最短路径有一些拓展问题:如何求出有多少条最短路径;如何输出路径;包含一些附加信息是我的处理
有多少条最短路径和输出最短路径可以归为一种解法。我们定义vector<int>q[n],q[i].size()表示最短路径的个数。通过dfs可以输出最短路径。
对于这个问题,我们还有限制条件。所以对所有的最短路径做一遍dfs,保存答案即可。
下面是代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
int e[][];
int dis[];
int c[];
bool vis[];
const int inf=0x3f3f3f3f;
int cmax,n,s,m;
vector<int>q[];
vector<int>path,temppath;
int mintake,minback;
void dijkstra(int d)
{
memset(vis,,sizeof(vis));
dis[]=;
for(int i=;i<=n;i++)
dis[i]=e[][i];
while()
{
int maxx=inf,tmp=-;
for(int i=;i<=n;i++)
{
if(vis[i]==&&dis[i]<maxx)
{
maxx=dis[i];
tmp=i;
}
}
vis[tmp]=;
if(tmp==-)
break;
for(int i=;i<=n;i++)
{
if(vis[i]==&&e[tmp][i]!=inf)
{
if(dis[i]>dis[tmp]+e[tmp][i])
{
q[i].clear();
q[i].push_back(tmp);
dis[i]=dis[tmp]+e[tmp][i];
}
else if(dis[i]==dis[tmp]+e[tmp][i])
{
q[i].push_back(tmp);
}
}
}
}
}
void dfs(int v)
{
temppath.push_back(v);
if(v==)
{
int back=,take=;
for(int i=temppath.size()-;i>=;i--)
{
int id=temppath[i];
if(c[id]>)
back+=c[id]; //需要带走的
else
{
if(back>(-c[id]))//如果之前带走的大于当前需要的
{
back+=c[id];
}
else
{
take+=-(back+c[id]);
back=;
}
}
}
if(take<mintake)
{
mintake=take;
minback=back;
path=temppath;
}
else if(take==mintake&&back<minback)
{
mintake=take;
minback=back;
path=temppath;
}
temppath.pop_back();
return;
}
for(int i=;i<q[v].size();i++)
dfs(q[v][i]);
temppath.pop_back();
}
int main()
{
mintake=inf;minback=inf;
scanf("%d%d%d%d",&cmax,&n,&s,&m);
int a,b,cost;
memset(e,inf,sizeof(e));
for(int i=;i<=n;i++)
{
scanf("%d",&c[i]);
c[i]-=cmax/;
} for(int i=;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&cost);
e[a][b]=e[b][a]=cost;
}
dijkstra(s);
dfs(s);
printf("%d 0",mintake);
for(int i=path.size()-;i>=;i--)
cout<<"->"<<path[i];
cout<<" "<<minback<<endl;
}

类似的问题还有PAT1003,也是多条最短路径的限制问题。

PAT1018 (dijkstra+dfs)的更多相关文章

  1. PAT-1018 Public Bike Management(dijkstra + dfs)

    1018. Public Bike Management There is a public bike service in Hangzhou City which provides great co ...

  2. 【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

    题目描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径( ...

  3. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  4. 天梯赛练习 L3-011 直捣黄龙 (30分) dijkstra + dfs

    题目分析: 本题我有两种思路,一种是只依靠dijkstra算法,在dijkstra部分直接判断所有的情况,以局部最优解得到全局最优解,另一种是dijkstra + dfs,先计算出最短距离以及每个点的 ...

  5. 1030 Travel Plan Dijkstra+dfs

    和1018思路如出一辙,先求最短路径,再dfs遍历 #include <iostream> #include <cstdio> #include <vector> ...

  6. patest_1003_Emergency (25)_(dijkstra+dfs)

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  7. 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs

    前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...

  8. PAT 1111 Online Map[Dijkstra][dfs]

    1111 Online Map(30 分) Input our current position and a destination, an online map can recommend seve ...

  9. 【PAT甲级】1087 All Roads Lead to Rome (30 分)(dijkstra+dfs或dijkstra+记录路径)

    题意: 输入两个正整数N和K(2<=N<=200),代表城市的数量和道路的数量.接着输入起点城市的名称(所有城市的名字均用三个大写字母表示),接着输入N-1行每行包括一个城市的名字和到达该 ...

随机推荐

  1. 02.photoshop制作透明图片步骤

    1.首先打开PS软件和图片如下.文件-新建. 2.如下图背景内容选择-透明.在确定. 3.出现了白底这就是透明的. 4.将图片背景都去除 5.在选择文件-存储为 6.格式选择.GIF的文件.其它不是透 ...

  2. day10-连接mysql虚拟机报错

    连接mysql时报:message from server: "Host '192.168.76.1' is not allowed to connect to this MySQL ser ...

  3. android的特点有哪些

    android拥有完善的应用程序框架,支持4大应用组件activity,service,contentProvider,broadcast,可以在任意层次上进行复用和更换: android中java字 ...

  4. iOS响应链原理

    ios找到被点击的view的过程是从根view开始递归地调用hitTest方法,直到有一个子view的hitTest方法返回自身:如果所有一级子view的hitTest方法都返回nil,那么根view ...

  5. Mongo 应用查询

    官网操作手册,基本就够用 https://docs.mongodb.com/manual/ 下面是个分组查询的例子,项目中用到然后查了个例子,自己理解了下,觉得很好很强大. https://blog. ...

  6. ACM__容器之vector

    今天做题碰到了深搜的题,有一种存图方式需要用到vector,对vector不是很熟悉,回顾了一下 vector都知道是一个容器,但并不准确,它是一个多功能的能够操作多种数据结构和算法的模板类和函数库. ...

  7. requirejs源码分析

  8. Hibernate学习笔记3.1(Hibernate关系映射)

    主要指对象之间的关系 1.一对一关联 一对一单项外键关联 比如说一夫一妻 Wifi.java package com.bjsxt.hibernate; import javax.persistence ...

  9. ArcGIS(ESRI)的发展历史和版本历史(简介)

    作者:fenghuayoushi 来源:CSDN 原文:https://blog.csdn.net/fenghuayoushi/article/details/6677360   ESRI公司介绍   ...

  10. ArcGIS案例学习笔记-点集中最近点对和最远点对

    ArcGIS案例学习笔记-点集中最近点对和最远点对 联系方式:谢老师,135-4855-4328,xiexiaokui@qq.com 目的:对于点图层,查找最近的点对和最远的点对 数据: 方法: 1. ...