There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.


Figure 1

Figure 1 illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:

1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.

2. PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (<= 100), always an even number, is the maximum capacity of each station; N (<= 500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci(i=1,...N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0->S1->...->Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0
题目大意是找一条最短路径,(走每条路径,都要把节点调整为最佳状态,带走或增加一些车子)有多条最短路径时,输出从管理中心最少带出的车子。带出的车子相同时,输出带回最少的车子。
dijkstra求最短路径有一些拓展问题:如何求出有多少条最短路径;如何输出路径;包含一些附加信息是我的处理
有多少条最短路径和输出最短路径可以归为一种解法。我们定义vector<int>q[n],q[i].size()表示最短路径的个数。通过dfs可以输出最短路径。
对于这个问题,我们还有限制条件。所以对所有的最短路径做一遍dfs,保存答案即可。
下面是代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
int e[][];
int dis[];
int c[];
bool vis[];
const int inf=0x3f3f3f3f;
int cmax,n,s,m;
vector<int>q[];
vector<int>path,temppath;
int mintake,minback;
void dijkstra(int d)
{
memset(vis,,sizeof(vis));
dis[]=;
for(int i=;i<=n;i++)
dis[i]=e[][i];
while()
{
int maxx=inf,tmp=-;
for(int i=;i<=n;i++)
{
if(vis[i]==&&dis[i]<maxx)
{
maxx=dis[i];
tmp=i;
}
}
vis[tmp]=;
if(tmp==-)
break;
for(int i=;i<=n;i++)
{
if(vis[i]==&&e[tmp][i]!=inf)
{
if(dis[i]>dis[tmp]+e[tmp][i])
{
q[i].clear();
q[i].push_back(tmp);
dis[i]=dis[tmp]+e[tmp][i];
}
else if(dis[i]==dis[tmp]+e[tmp][i])
{
q[i].push_back(tmp);
}
}
}
}
}
void dfs(int v)
{
temppath.push_back(v);
if(v==)
{
int back=,take=;
for(int i=temppath.size()-;i>=;i--)
{
int id=temppath[i];
if(c[id]>)
back+=c[id]; //需要带走的
else
{
if(back>(-c[id]))//如果之前带走的大于当前需要的
{
back+=c[id];
}
else
{
take+=-(back+c[id]);
back=;
}
}
}
if(take<mintake)
{
mintake=take;
minback=back;
path=temppath;
}
else if(take==mintake&&back<minback)
{
mintake=take;
minback=back;
path=temppath;
}
temppath.pop_back();
return;
}
for(int i=;i<q[v].size();i++)
dfs(q[v][i]);
temppath.pop_back();
}
int main()
{
mintake=inf;minback=inf;
scanf("%d%d%d%d",&cmax,&n,&s,&m);
int a,b,cost;
memset(e,inf,sizeof(e));
for(int i=;i<=n;i++)
{
scanf("%d",&c[i]);
c[i]-=cmax/;
} for(int i=;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&cost);
e[a][b]=e[b][a]=cost;
}
dijkstra(s);
dfs(s);
printf("%d 0",mintake);
for(int i=path.size()-;i>=;i--)
cout<<"->"<<path[i];
cout<<" "<<minback<<endl;
}

类似的问题还有PAT1003,也是多条最短路径的限制问题。

PAT1018 (dijkstra+dfs)的更多相关文章

  1. PAT-1018 Public Bike Management(dijkstra + dfs)

    1018. Public Bike Management There is a public bike service in Hangzhou City which provides great co ...

  2. 【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

    题目描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径( ...

  3. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  4. 天梯赛练习 L3-011 直捣黄龙 (30分) dijkstra + dfs

    题目分析: 本题我有两种思路,一种是只依靠dijkstra算法,在dijkstra部分直接判断所有的情况,以局部最优解得到全局最优解,另一种是dijkstra + dfs,先计算出最短距离以及每个点的 ...

  5. 1030 Travel Plan Dijkstra+dfs

    和1018思路如出一辙,先求最短路径,再dfs遍历 #include <iostream> #include <cstdio> #include <vector> ...

  6. patest_1003_Emergency (25)_(dijkstra+dfs)

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  7. 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs

    前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...

  8. PAT 1111 Online Map[Dijkstra][dfs]

    1111 Online Map(30 分) Input our current position and a destination, an online map can recommend seve ...

  9. 【PAT甲级】1087 All Roads Lead to Rome (30 分)(dijkstra+dfs或dijkstra+记录路径)

    题意: 输入两个正整数N和K(2<=N<=200),代表城市的数量和道路的数量.接着输入起点城市的名称(所有城市的名字均用三个大写字母表示),接着输入N-1行每行包括一个城市的名字和到达该 ...

随机推荐

  1. twisted的tcp.py分析

    #每个connector都有一个 Connection对象@implementer(interfaces.ITCPTransport, interfaces.ISystemHandle) class ...

  2. leetcode1010

    class Solution: def numPairsDivisibleBy60(self, time: 'List[int]') -> int: sums = 0 s = {} n = le ...

  3. Java并发:线程间数据传递和交换

    转自:https://www.cnblogs.com/java-zzl/p/9741288.html 一.通过SynchronousQueue方式实现线程间数据传递: 线程A与线程B共同持有一个Syn ...

  4. Django 之多表查询 与多表的使用

    1.django的多表查询 主要区分为: 正向查询    逆向查询 1. 多表查询: 是一个复杂的查询,他分为对象查询和__模糊查询两种方式 2. 多表查询: 又分为 一对一查询, 一对多查询, 多对 ...

  5. Phabricator代码审核Audit用户指南

    作者: shaneZhang 分类: 互联网技术 发布时间: 2015-07-04 13:37 概览 Phabricator支持两种代码审查工作流:“review”(提交前审查)和 “audit”(提 ...

  6. APP发行渠道

    1,安卓APP发行:google play,原名android store 2,IOS APP: apple store 3,国内各大平台,应用宝,360,小米,华为 ...

  7. Angular2学习笔记

    Angular2 这里 Angular2 是指采用 TypeScript 语言的 Angular 2.0及以上版本.与采用 JavaScript 语言的 AngularJS 相比,Angular2 不 ...

  8. gitlab jenkins 自动构建

    工作中有这样一种需求: 每次提交代码之后,都自动执行 单元测试脚本,进行单元测试 jenkins监听项目的某个分支,设置运行脚本,设置一个url作为回调 利用gitlab的钩子,在每次有提交之后,触发 ...

  9. UploadFtp

    #!/bin/bash FILENAME=$ DSTDIR=$ FTPSRV=ip FTPUSER="user" FTPPWD="password" SRCDI ...

  10. GIS案例学习笔记-ArcGIS整图大图出图实例教程

    GIS案例学习笔记-ArcGIS整图大图出图实例教程 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 1. 通过出图比例尺(1:2000),地图范围测算图纸大小. 图 ...