【刷题】BZOJ 4391 [Usaco2015 dec]High Card Low Card
Description
Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of opposable thumbs. Unfortunately, none of the other cows in the herd are good opponents. They are so bad, in fact, that they always play in a completely predictable fashion! Nonetheless, it can still be a challenge for Bessie to figure out how to win.
Bessie and her friend Elsie are currently playing a simple card game where they take a deck of 2N cards, conveniently numbered 1…2N, and divide them into N cards for Bessie and N cards for Elsie. The two then play NN rounds, where in each round Bessie and Elsie both play a single card. Initially, the player who plays the highest card earns a point. However, at one point during the game, Bessie can decide to switch the rules so that for the rest of the game, the player who plays the lowest card wins a point. Bessie can choose not to use this option, leaving the entire game in "high card wins" mode, or she can even invoke the option right away, making the entire game follow the "low card wins" rule.
Given that Bessie can predict the order in which Elsie will play her cards, please determine the maximum number of points Bessie can win.
奶牛Bessie和Elsie在玩一种卡牌游戏。一共有2N张卡牌,点数分别为1到2N,每头牛都会分到N张卡牌。
游戏一共分为N轮,因为Bessie太聪明了,她甚至可以预测出每回合Elsie会出什么牌。
每轮游戏里,两头牛分别出一张牌,点数大者获胜。
同时,Bessie有一次机会选择了某个时间点,从那个时候开始,每回合点数少者获胜。
Bessie现在想知道,自己最多能获胜多少轮?
Input
The first line of input contains the value of N (2≤N≤50,000).
The next N lines contain the cards that Elsie will play in each of the successive rounds of the game. Note that it is easy to determine Bessie's cards from this information.
Output
Output a single line giving the maximum number of points Bessie can score.
Sample Input
4
1
8
4
3
Sample Output
3
HINT
Here, Bessie must have cards 2, 5, and 6, and 7 in her hand, and she can use these to win at most 3 points. For example, she can defeat the 1 card and then switch the rules to "low card wins", after which she can win two more rounds.
Solution
怎么说,贪心的题都不知道怎么去讲
首先,对于单个数,我们要赢它,那么肯定是在自己的数的集合中选一个大于它的最小的数,或者是小于它的最大的数(取决在哪一段)
这是单个数的贪心
然后求出 \(f\) 数组,\(f_i\) 代表从前往后到第 \(i\) 个数,赢的方式必须是大于的情况下,最多能赢多少把
同时求出 \(g\) 数组,\(g_i\) 代表从后往前到第 \(i\) 个数,赢的方式必须是小于的情况下,最多能赢多少把
那么最后的答案就是 \(\max_{i=0}^n\{f_i+g_{i+1}\}\)
为什么是这样,这样有的数不是用了两次吗
确实有的数用了两次,但考虑这样的事实:
如果一个数用了两次,那么肯定有一个数未被使用。
用了两次的数一定是 \(f\) 中用一次,\(g\) 中用一次,同一段中不可能用两次
设用了两次的数为 \(a\) ,未用的数为 \(b\) 。如果 \(a<b\) ,那么 \(b\) 是可以代替 \(a\) 在比更大的那一段取得胜利的;相反同理。
而我们已经最大化了 \(f\) 数组和 \(g\) 数组,所以这一定是正确的
求两个数组,就用个set维护就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=50000+10;
int n,vis[MAXN<<1],a[MAXN],f[MAXN],g[MAXN],cnt,ans;
std::set<int> S;
std::set<int>::iterator it;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);
for(register int i=1;i<=n;++i)read(a[i]),vis[a[i]]=1;
for(register int i=1;i<=(n<<1);++i)
if(!vis[i])S.insert(i);
for(register int i=1;i<=n;++i)
if((it=S.lower_bound(a[i]))!=S.end())f[i]=++cnt,S.erase(it);
else f[i]=f[i-1];
S.clear();cnt=0;
for(register int i=1;i<=(n<<1);++i)
if(!vis[i])S.insert(i);
for(register int i=n;i>=1;--i)
if(((it=S.lower_bound(a[i]))--)!=S.begin())g[i]=++cnt,S.erase(it);
else g[i]=g[i+1];
for(register int i=0;i<=n;++i)chkmax(ans,f[i]+g[i+1]);
write(ans,'\n');
return 0;
}
【刷题】BZOJ 4391 [Usaco2015 dec]High Card Low Card的更多相关文章
- 【BZOJ4391】[Usaco2015 dec]High Card Low Card(贪心)
[BZOJ4391][Usaco2015 dec]High Card Low Card(贪心) 题面 BZOJ 题解 预处理前缀后缀的结果,中间找个地方合并就好了. #include<iostr ...
- 【题解】P3129高低卡(白金)High Card Low Card
[题解][P3129 USACO15DEC]高低卡(白金)High Card Low Card (Platinum) 考虑贪心. 枚举在第几局改变规则,在改变规则之前,尽量出比它大的最小的牌,在改变规 ...
- BZOJ 4390: [Usaco2015 dec]Max Flow
4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 113[Submi ...
- bzoj 4397: [Usaco2015 dec]Breed Counting -- 前缀和
4397: [Usaco2015 dec]Breed Counting Time Limit: 10 Sec Memory Limit: 128 MB Description Farmer John ...
- 【dp 贪心】bzoj4391: [Usaco2015 dec]High Card Low Card
巧妙的贪心 Description Bessie the cow is a huge fan of card games, which is quite surprising, given her l ...
- [BZOJ4391][Usaco2015 dec]High Card Low Card dp+set+贪心
Description Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of ...
- [USACO15DEC]高低卡(白金)High Card Low Card (Platinum)
题目描述 Bessie the cow is a hu e fan of card games, which is quite surprising, given her lack of opposa ...
- BZOJ4391 High Card Low Card [Usaco2015 dec](贪心+线段树/set库
正解:贪心+线段树/set库 解题报告: 算辣直接甩链接qwq 恩这题就贪心?从前往后从后往前各推一次然后找一遍哪个地方最大就欧克了,正确性很容易证明 (这里有个,很妙的想法,就是,从后往前推从前往后 ...
- [bzoj4391] [Usaco2015 dec]High Card Low Card 贪心 线段树
---题面--- 题解: 观察到以决策点为分界线,以点数大的赢为比较方式的游戏都是它的前缀,反之以点数小的赢为比较方式的都是它的后缀,也就是答案是由两段答案拼凑起来的. 如果不考虑判断胜负的条件的变化 ...
随机推荐
- 基于LBS平台的iOS开发
LBS,即Location Based Services,基于位置服务,用于定位.导航等功能,比如地图应用.订外卖等的app就需要这个功能. 在这里我使用的是高德LBS开放平台,地址:http://l ...
- python 回溯法 子集树模板 系列 —— 19、野人与传教士问题
问题 在河的左岸有N个传教士.N个野人和一条船,传教士们想用这条船把所有人都运过河去,但有以下条件限制: (1)修道士和野人都会划船,但船每次最多只能运M个人: (2)在任何岸边以及船上,野人数目都不 ...
- 页面弹出全屏浮层或遮罩时,禁止底层body滚动
· 解决方法 针对弹出的浮层的 touchmove事件,添加阻止浏览器默认行为. $('.mask-wrapper').on('touchmove', function (event) { // 监听 ...
- CS50.4
1, PDF,portable document format 便携式文档格式 2, 关于文本编辑器(文字编辑器)和文档编辑器(文字处理器),前者可用来写程序的源代码?名字挺难分辨的. *3, “-o ...
- binary 和 varbinary 用法全解
在SQL Server中,使用数据类型 binary(n) 和 varbinary(n) 存储二进制数据,n是指字节数量: binary(n):固定长度为 n 字节,其中 n 值从 1 到 8,000 ...
- 如何在内网安装compass
神器compass是肿么用这里不做介绍,因为我也不清楚,可参考官网:http://compass-style.org.这里主要介绍如何在内网安装compass. 首先介绍一般是如何安装compass的 ...
- 解决SSH登录用户执行的命令部分环境变量参数不生效的问题
问题概况 linux机器在/etc/profile配置完成环境变量后,SSH到目标机器执行命令,但是获取不到已配置的环境变量值. 例如场景: 在/etc/profile配置了http代理 export ...
- LintCode——筛子求和
描述:扔n个骰子,向上面的数字之和为 S .给定 Given n,请列出所有可能的 S 值及其相应的概率. 样例:给定n=1,返回 [ [1, 0.17], [2, 0.17], [3, 0.17], ...
- Github与SmartGit使用说明与建议
当使用github做协同的时候,我们常常需要在客户端安装相应的软件,SmartGit就是一款非常出色的软件,不过是要付费的,我们可以使用non-commercial版本. Download: http ...
- 【Alpha】第四次Scrum meeting
今天任务一览: 姓名 今日完成任务 所耗时间 刘乾 配置好了所有物理实验的通配模板,为服务器配置了latex中文环境,设置了一些常用字体. Issue链接:https://github.com/bua ...