Description

Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of opposable thumbs. Unfortunately, none of the other cows in the herd are good opponents. They are so bad, in fact, that they always play in a completely predictable fashion! Nonetheless, it can still be a challenge for Bessie to figure out how to win.

Bessie and her friend Elsie are currently playing a simple card game where they take a deck of 2N cards, conveniently numbered 1…2N, and divide them into N cards for Bessie and N cards for Elsie. The two then play NN rounds, where in each round Bessie and Elsie both play a single card. Initially, the player who plays the highest card earns a point. However, at one point during the game, Bessie can decide to switch the rules so that for the rest of the game, the player who plays the lowest card wins a point. Bessie can choose not to use this option, leaving the entire game in "high card wins" mode, or she can even invoke the option right away, making the entire game follow the "low card wins" rule.

Given that Bessie can predict the order in which Elsie will play her cards, please determine the maximum number of points Bessie can win.

奶牛Bessie和Elsie在玩一种卡牌游戏。一共有2N张卡牌,点数分别为1到2N,每头牛都会分到N张卡牌。

游戏一共分为N轮,因为Bessie太聪明了,她甚至可以预测出每回合Elsie会出什么牌。

每轮游戏里,两头牛分别出一张牌,点数大者获胜。

同时,Bessie有一次机会选择了某个时间点,从那个时候开始,每回合点数少者获胜。

Bessie现在想知道,自己最多能获胜多少轮?

Input

The first line of input contains the value of N (2≤N≤50,000).

The next N lines contain the cards that Elsie will play in each of the successive rounds of the game. Note that it is easy to determine Bessie's cards from this information.

Output

Output a single line giving the maximum number of points Bessie can score.

Sample Input

4

1

8

4

3

Sample Output

3

HINT

Here, Bessie must have cards 2, 5, and 6, and 7 in her hand, and she can use these to win at most 3 points. For example, she can defeat the 1 card and then switch the rules to "low card wins", after which she can win two more rounds.

Solution

怎么说,贪心的题都不知道怎么去讲

首先,对于单个数,我们要赢它,那么肯定是在自己的数的集合中选一个大于它的最小的数,或者是小于它的最大的数(取决在哪一段)

这是单个数的贪心

然后求出 \(f\) 数组,\(f_i\) 代表从前往后到第 \(i\) 个数,赢的方式必须是大于的情况下,最多能赢多少把

同时求出 \(g\) 数组,\(g_i\) 代表从后往前到第 \(i\) 个数,赢的方式必须是小于的情况下,最多能赢多少把

那么最后的答案就是 \(\max_{i=0}^n\{f_i+g_{i+1}\}\)

为什么是这样,这样有的数不是用了两次吗

确实有的数用了两次,但考虑这样的事实:

  • 如果一个数用了两次,那么肯定有一个数未被使用。

  • 用了两次的数一定是 \(f\) 中用一次,\(g\) 中用一次,同一段中不可能用两次

设用了两次的数为 \(a\) ,未用的数为 \(b\) 。如果 \(a<b\) ,那么 \(b\) 是可以代替 \(a\) 在比更大的那一段取得胜利的;相反同理。

而我们已经最大化了 \(f\) 数组和 \(g\) 数组,所以这一定是正确的

求两个数组,就用个set维护就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=50000+10;
int n,vis[MAXN<<1],a[MAXN],f[MAXN],g[MAXN],cnt,ans;
std::set<int> S;
std::set<int>::iterator it;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);
for(register int i=1;i<=n;++i)read(a[i]),vis[a[i]]=1;
for(register int i=1;i<=(n<<1);++i)
if(!vis[i])S.insert(i);
for(register int i=1;i<=n;++i)
if((it=S.lower_bound(a[i]))!=S.end())f[i]=++cnt,S.erase(it);
else f[i]=f[i-1];
S.clear();cnt=0;
for(register int i=1;i<=(n<<1);++i)
if(!vis[i])S.insert(i);
for(register int i=n;i>=1;--i)
if(((it=S.lower_bound(a[i]))--)!=S.begin())g[i]=++cnt,S.erase(it);
else g[i]=g[i+1];
for(register int i=0;i<=n;++i)chkmax(ans,f[i]+g[i+1]);
write(ans,'\n');
return 0;
}

【刷题】BZOJ 4391 [Usaco2015 dec]High Card Low Card的更多相关文章

  1. 【BZOJ4391】[Usaco2015 dec]High Card Low Card(贪心)

    [BZOJ4391][Usaco2015 dec]High Card Low Card(贪心) 题面 BZOJ 题解 预处理前缀后缀的结果,中间找个地方合并就好了. #include<iostr ...

  2. 【题解】P3129高低卡(白金)High Card Low Card

    [题解][P3129 USACO15DEC]高低卡(白金)High Card Low Card (Platinum) 考虑贪心. 枚举在第几局改变规则,在改变规则之前,尽量出比它大的最小的牌,在改变规 ...

  3. BZOJ 4390: [Usaco2015 dec]Max Flow

    4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 113[Submi ...

  4. bzoj 4397: [Usaco2015 dec]Breed Counting -- 前缀和

    4397: [Usaco2015 dec]Breed Counting Time Limit: 10 Sec  Memory Limit: 128 MB Description Farmer John ...

  5. 【dp 贪心】bzoj4391: [Usaco2015 dec]High Card Low Card

    巧妙的贪心 Description Bessie the cow is a huge fan of card games, which is quite surprising, given her l ...

  6. [BZOJ4391][Usaco2015 dec]High Card Low Card dp+set+贪心

    Description Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of ...

  7. [USACO15DEC]高低卡(白金)High Card Low Card (Platinum)

    题目描述 Bessie the cow is a hu e fan of card games, which is quite surprising, given her lack of opposa ...

  8. BZOJ4391 High Card Low Card [Usaco2015 dec](贪心+线段树/set库

    正解:贪心+线段树/set库 解题报告: 算辣直接甩链接qwq 恩这题就贪心?从前往后从后往前各推一次然后找一遍哪个地方最大就欧克了,正确性很容易证明 (这里有个,很妙的想法,就是,从后往前推从前往后 ...

  9. [bzoj4391] [Usaco2015 dec]High Card Low Card 贪心 线段树

    ---题面--- 题解: 观察到以决策点为分界线,以点数大的赢为比较方式的游戏都是它的前缀,反之以点数小的赢为比较方式的都是它的后缀,也就是答案是由两段答案拼凑起来的. 如果不考虑判断胜负的条件的变化 ...

随机推荐

  1. 2017-2018-2 《网络对抗技术》 20155319 第二周 Exp1 PC平台逆向破解(5)M

    2017-2018-2 <网络对抗技术> 20155319 第二周 Exp1 PC平台逆向破解(5)M 一.实践目标 1.1实践介绍 本次实践的对象是一个名为pwn1的linux可执行文件 ...

  2. Android开发——Fragment知识整理(二)

    0.  前言 Android开发中的Fragment的应用非常广泛,在Android开发--Fragment知识整理(一)中简单介绍了关于Fragment的生命周期,常用API,回退栈的应用等知识.这 ...

  3. POJ2274

    这真的是一道数据结构的好题. 题意是在一条直线上有n辆车,每辆车有一个初始位置x[i]和速度v[i],问最终(在无限时间后)一共会发生多少次超车事件(mod 1000000),以及输出这些事件(如果大 ...

  4. P4292 [WC2010]重建计划

    无脑上二分+淀粉质完事了 每个子树算的时候把儿子按照最长路径从小到大依次做,和前面的单调队列算一波,每个儿子的复杂度不超过这个子树大小 // luogu-judger-enable-o2 #inclu ...

  5. Flask学习-Flask基础之WSGI

    一.WSGI为什么会出现? 在学习一个东西之前,我们肯定想知道:它为什么会出现?那么,WSGI为什么会出现呢? 我们知道,部署一个web应用,经常需要使用nginx.apache或者IIS等web服务 ...

  6. [Direct2D开发] 绘制网格

    转载请注明出处:http://www.cnblogs.com/Ray1024 一.引言 最近在使用Direct2D进行绘制工作中,需要实现使用Direct2D绘制网格的功能.在网上查了很多资料,终于实 ...

  7. 异步编程之asyncio简单介绍

    引言: python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板. as ...

  8. jmeter:正则表达式的使用

    Jmeter中正则关联的使用是可以提取动态变化数据进行传递:关联的方式和提取器有多种,这篇先讲解正则表达式怎么来关联(?) 在需要获取数据的http请求上添加后置处理器 比如提取百度title值: 正 ...

  9. RN热更新

    说白了集成RN业务,就是集成RN离线包,解析并渲染.所以,RN热更新的根本原理就是更换js bundle文件和资源文件,并重新加载,新的内容就完美的展示出来了. 目前市场上出现的3种热更新模式如下:仅 ...

  10. PAT甲题题解-1028. List Sorting (25)-水排序

    #include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...