【BZOJ1414】[ZJOI2009]对称的正方形(哈希)

题面

BZOJ

洛谷

题解

深思熟虑一波,发现一个矩阵如果左右对称的话,那么它每行都是一个回文串,同理,如果上下对称的话,那么每列都是一个回文串。既然每行每列都是一个回文串,那么我们把它中心对称一下它还是一个回文串,妙蛙。

我们在矩阵中间补上\(0\),这样子就有回文中心了,对于每一个中心算算它往左右能够拓展的最大回文串的长度,然后二分计算一下能够得到的最大矩阵就好了。

至于哈希什么的,自己随便YY一下吧,我自己写半天不会,直接照着别人的写了一遍额。。

#include<iostream>
#include<cstdio>
using namespace std;
#define uint unsigned int
#define MAX 2020
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
const uint base1=19260817,base2=233;
int n,m,g[MAX][MAX],ans,tot;
uint pw1[MAX*MAX],pw2[MAX*MAX],s[3][MAX][MAX];
bool check(int l1,int r1,int l2,int r2)
{
int len1=r1-l1+1,len2=r2-l2+1;
int s0=s[0][r1][r2]-s[0][r1][l2-1]*pw2[len2]-s[0][l1-1][r2]*pw1[len1]+s[0][l1-1][l2-1]*pw1[len1]*pw2[len2];
int s1=s[1][r1][l2]-s[1][r1][r2+1]*pw2[len2]-s[1][l1-1][l2]*pw1[len1]+s[1][l1-1][r2+1]*pw1[len1]*pw2[len2];
int s2=s[2][l1][r2]-s[2][l1][l2-1]*pw2[len2]-s[2][r1+1][r2]*pw1[len1]+s[2][r1+1][l2-1]*pw1[len1]*pw2[len2];
if(s0!=s1||s0!=s2||s1!=s2)return false;
return true;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
g[i*2-1][j*2-1]=read();
n=n*2-1,m=m*2-1;tot=n*m;pw1[0]=pw2[0]=1;
for(int i=1;i<=tot;++i)pw1[i]=pw1[i-1]*base1;
for(int i=1;i<=tot;++i)pw2[i]=pw2[i-1]*base2;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
s[0][i][j]=s[0][i][j-1]*base2+g[i][j];
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
s[0][i][j]+=s[0][i-1][j]*base1;
for(int i=1;i<=n;++i)
for(int j=m;j;--j)
s[1][i][j]=s[1][i][j+1]*base2+g[i][j];
for(int i=1;i<=n;++i)
for(int j=m;j;--j)
s[1][i][j]+=s[1][i-1][j]*base1;
for(int i=n;i;--i)
for(int j=1;j<=m;++j)
s[2][i][j]=s[2][i][j-1]*base2+g[i][j];
for(int i=n;i;--i)
for(int j=1;j<=m;++j)
s[2][i][j]+=s[2][i+1][j]*base1;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
if(!((i+j)&1))
{
int l=1,r=min(min(i,n-i+1),min(j,m-j+1)),ret=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(i-mid+1,i+mid-1,j-mid+1,j+mid-1))ret=mid,l=mid+1;
else r=mid-1;
}
ans+=(ret+(i&1))>>1;
}
printf("%d\n",ans);
return 0;
}

【BZOJ1414】[ZJOI2009]对称的正方形(哈希)的更多相关文章

  1. 【BZOJ1414/3705】[ZJOI2009]对称的正方形 二分+hash

    [BZOJ1414/3705][ZJOI2009]对称的正方形 Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们 ...

  2. bzoj 1414: [ZJOI2009]对称的正方形 manacher算法+單調隊列

    1414: [ZJOI2009]对称的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 331  Solved: 149[Submit][Stat ...

  3. 题解-------[ZJOI2009]对称的正方形

    传送门 题目大意 找到所有的上下左右都相同的正方形. 思路:二分+二维Hash 这道题我们首先想到不能暴力判断一个正方形是否合法. 然后我们发现当一个正方形合法时,以这个正方形为中心且比它小的正方形也 ...

  4. bzoj 1414: [ZJOI2009]对称的正方形

    Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们排成了一个n行m列的矩阵.通过观察,Orez发现这些数据蕴涵了一 ...

  5. [luoguP2601] [ZJOI2009]对称的正方形(二维Hash + 二分 || Manacher)

    传送门 很蒙蔽,不知道怎么搞. 网上看题解有说可以哈希+二分搞,也有的人说用Manacher搞,Manacher是什么鬼?以后再学. 对于这个题,可以从矩阵4个角hash一遍,然后枚举矩阵中的点,再二 ...

  6. luoguP2601 对称的正方形

    题目描述 给出一个数字矩形,求这个矩形中有多少个子正方形满足上下对称.左右对称. 思路 我们可以用3个哈希数组 \(a\ b\ c\) 分别表示矩形从左上往右下看,从左下往右上看,从右上往左下看的样子 ...

  7. 【bzoj 1414】对称的正方形 单调队列+manacher

    Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们排成了一个n行m列的矩阵.通过观察,Orez发现这些数据蕴涵了一 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. manacher算法学习(求最长回文子串长度)

    Manacher总结 我的代码 学习:yyb luogu题目模板 xzy的模板 #include<iostream> #include<cstdlib> #include< ...

随机推荐

  1. 03-Centos7安装部署Mirrorgate-踩坑记录

    FAQ 1.没有安装bzip2 解决方法 yum -y install bzip2 > phantomjs-prebuilt@2.1.16 install /root/test/mirrorga ...

  2. centos 64位系统安装

    由于centos 64位镜像大于4G,所以U盘装不进去.iso镜像,选择网络安装的方法或者使用一个U盘制作启动盘和一个硬盘来装镜像的方法. 1 网络安装第一步 下载 CentOS 安装 ISO 浏览  ...

  3. Spring Boot和Dubbo整合

    provider端 POM依赖 <dependencies> <dependency> <groupId>org.springframework.boot</ ...

  4. Android Device Monitor 文件管理的常见问题 - z

    Android Device Monitor 是 Android Studio 中用于监测模拟器或真机运行状态的一款开发者工具.但开发者在使用它的过程中往往会遇到很多问题,尤其对于新手.本文分析了实际 ...

  5. 使用jdb调试apk

    jdb是一个支持java代码级调试的工具,它是由java jdk提供的,存在于xxx\Java\jdk1.6.0_21\bin之下 使用ddms调试时,主机会打开另外一个网络端口,在DDMS里查看,一 ...

  6. 20155304《网络对抗》Exp2 后门原理与实践

    20155332<网络对抗>Exp2 后门原理与实践 实验内容 (3.5分) (1)使用netcat获取主机操作Shell,cron启动 (0.5分) (2)使用socat获取主机操作Sh ...

  7. Kubernetes学习之路(十九)之Kubernetes dashboard认证访问

    Dashboard:https://github.com/kubernetes/dashboard 一.Dashboard部署 由于需要用到k8s.gcr.io/kubernetes-dashboar ...

  8. [hdu5503]EarthCup[霍尔定理]

    题意 一共 \(n\) 只球队,两两之间会进行一场比赛,赢得一分输不得分,给出每只球队最后的得分,问能否构造每场比赛的输赢情况使得得分成立.多组数据 \(T\le 10,n\le 5\times 10 ...

  9. Elasticsearch Java Rest Client API 整理总结 (二) —— SearchAPI

    目录 引言 Search APIs Search API Search Request 可选参数 使用 SearchSourceBuilder 构建查询条件 指定排序 高亮请求 聚合请求 建议请求 R ...

  10. 一个可以代替冗长switch-case的消息分发小框架

    在项目中,我需要维护一个应用层的字节流协议.这个协议的每条报文都是一个字节数组,数组的头两个字节表示消息的传送方向,第三.四个字节表示消息ID,也就是消息种类,再往后是消息内容.时间戳.校验码等……整 ...