【题解】 [NOI2009]变换序列 (二分图匹配)
Solution:
- 这个题面出的很毒瘤,读懂了其实是个板子题qwq
- 题面意思:有个\(0\)至\(N-1\)的数列是由另一个数列通过加减得到的,相当于将\(A_i\)变成\(i\),每一步的代价计算就是\(min(A_i-i,N-(A_i-i))\),并且\(A_i\left(0<=i<N\right)\)互不相同,读入代价,要求字典序最小的满足要求的数列
- 我们设读入的为\(w[i]\)
- 思路其实很简单,\(i\)只可能是由\(i-w[i]\) 或者 \(i+w[i]\) 或者 \(i+N-w[i]\) 或者 \(i-N+w[i]\),然后我们把符合范围\(0\)至\(N-1\)的对应点从大到小建图,这样可以保证搜的时候是从小的点开始
- 然后就从\(N-1\)到\(0\)进行二分图匹配,如果无法匹配就输出\(No Answer\),这样从后到前匈牙利算法去做,保证越前面的匹配的数是最小的。
- 因为\(be[i]\)中存的是\(i\)数字对应变成的数字是什么,所以反过来存一下输出就好啦
主要是想字典序最小的地方有点emmm神奇,其他的地方还是比较显然的
Code:
//It is coded by Ning_Mew on 3.17
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+7;
bool vis[maxn];
int n,w[maxn],be[maxn],ans[maxn];
int head[maxn],cnt=0;
struct Edge{
int nxt,to;
}edge[maxn*4];
priority_queue<int>q;
void add(int from,int to){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
bool find(int k){
for(int i=head[k];i!=0;i=edge[i].nxt){
int v=edge[i].to;
if(!vis[v]){
vis[v]=true;
if(be[v]==-1||find(be[v])){be[v]=k;return true;}
}
}return false;
}
int main(){
scanf("%d",&n);
while(!q.empty())q.pop();
for(int i=0;i<n;i++){
scanf("%d",&w[i]);
q.push(i-w[i]); q.push(i+w[i]);
q.push(i+n-w[i]);q.push(i-n+w[i]);
while(!q.empty()){
int box=q.top();q.pop();
//cout<<box<<endl;
if(box>=0&&box<n)add(i,box);//cout<<i<<' '<<box<<endl;
}
}
memset(be,-1,sizeof(be));
for(int i=n-1;i>=0;i--){
memset(vis,false,sizeof(vis));
if(find(i));
else{printf("No Answer\n");return 0;}
}
for(int i=0;i<n;i++)ans[be[i]]=i;
for(int i=0;i<n;i++)printf("%d ",ans[i]);printf("\n");
return 0;
}
【题解】 [NOI2009]变换序列 (二分图匹配)的更多相关文章
- Luogu P1963 [NOI2009]变换序列(二分图匹配)
P1963 [NOI2009]变换序列 题意 题目描述 对于\(N\)个整数\(0,1, \cdots ,N-1\),一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中\(T_i \in ...
- 【BZOJ1562】【jzyzOJ1730】【COGS409】NOI2009变换序列 二分图匹配
[问题描述] 对于N个整数0, 1, ……, N-1,一个变换序列T可以将i变成Ti,其中 定义x和y之间的距离.给定每个i和Ti之间的距离D(i,Ti), 你需要求出一个满足要求的变换 ...
- BZOJ1562: [NOI2009]变换序列(二分图 匈牙利)
Description Input Output Sample Input 5 1 1 2 2 1 Sample Output 1 2 4 0 3 HINT 30%的数据中N≤50:60%的数据中N≤ ...
- BZOJ 1562 变换序列(二分图匹配)
显然每个位置只有两个情况,所以用二分图最大匹配来求解. 如果二分图有完全匹配,则有解. 关键是如何求最小的字典序解. 实际上用匈牙利算法从后面开始找增广路,并优先匹配字典序小的即可. # includ ...
- BZOJ 1562 变换序列 二分图匹配+字典序
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1562 题目大意: 思路: 逆序匹配,加边匹配的时候保持字典序小的先加入. 具体证明:h ...
- Bzoj 1562: [NOI2009]变换序列 匈牙利算法,二分图匹配
题目: http://cojs.tk/cogs/problem/problem.php?pid=409 409. [NOI2009]变换序列 ★★☆ 输入文件:transform.in 输出文 ...
- BZOJ 1562 [NOI2009] 变换序列
[NOI2009] 变换序列 [题解] 就是有一个序列,每个位置可以填两个数,不可重复,问最小字典序. 显然,可以建一个二分图,判合法就是找完美匹配. 那怎么弄最小字典序呢?有好多种解法,我这里给出了 ...
- noi2009变换序列
noi2009变换序列 一.题目 1843 变换序列 2009年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 ...
- [Luogu 1963] NOI2009 变换序列
[Luogu 1963] NOI2009 变换序列 先%Dalao's Blog 什么?二分图匹配?这个确定可以建图? 「没有建不成图的图论题,只有你想不出的建模方法.」 建图相当玄学,不过理解大约也 ...
随机推荐
- 评定星级的前端显示js
五颗星的星级评定: 说明:假设是利用三种图片显示星级评定,即 1.满亮的星 2.半亮的星星 3.不亮的星星: 满分是5分:(此处当然可以作为一个参数可变 函数传入参数grade表示当前分值. func ...
- Python3入门(六)——函数式编程
一.高阶函数 1.可以通过变量指向函数,达到类似别名的效果: >>> f = abs >>> f(-10) 10 2.函数的参数可以是函数,也就是函数可以作为一个入 ...
- 20155302《网络对抗》Exp8 Web基础
20155302<网络对抗>Exp8 Web基础 实验内容 (1).Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个 ...
- 20155320 Exp3 免杀原理与实践
20155320 Exp3 免杀原理与实践 免杀 一般是对恶意软件做处理,让它不被杀毒软件所检测.也是渗透测试中需要使用到的技术. [基础问题回答] (1)杀软是如何检测出恶意代码的? 1.通过行为检 ...
- Hadoop日记Day5---HDFS介绍
一.HDFS介绍 1.1 背景 随着数据量越来越大,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式 ...
- vs编译器好多下划波浪线但不报错
解决办法:项目属性->c/c++->常规->附加包含目录->$(ProjectDir): $(ProjectDir) 项目的目录(定义形式:驱动器 + 路径):包括尾部的反斜杠 ...
- springtest mapper注入失败问题解决 {@org.springframework.beans.factory.annotation.Autowired(required=true)}
花费了一下午都没有搜索到相关解决方案的原因,一是我使用的 UnsatisfiedDependencyException 这个比较上层的异常(在最前面)来进行搜索, 范围太广导致没有搜索到,而且即便是有 ...
- [CF1062F]Upgrading Cities[拓扑排序]
题意 一张 \(n\) 点 \(m\) 边的 \(DAG\) ,问有多少个点满足最多存在一个点不能够到它或者它不能到. \(n,m\leq 3\times 10^5\) 分析 考虑拓扑排序,如果 \( ...
- 谷歌商店高级搜索 Google play advanced search
这个问题一直搜索了很久都没有答案,后来在StackOverflow上提问,很久也没人回答. 详见我的SO:https://stackoverflow.com/questions/52939493/ho ...
- 设计模式 笔记 解释器模式 Interpreter
//---------------------------15/04/26---------------------------- //Interpreter 解释器模式----类行为型模式 /* 1 ...