【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

题面

BZOJ

洛谷

题解

戳这里

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
const int yw=10000;
struct BigNum
{
ll s[MAX*2];int ws;
void output()
{
printf("%lld",s[ws]);
for(int i=ws-1;i;--i)
printf("%04lld",s[i]);
puts("");
}
void clear(){memset(s,0,sizeof(s));ws=0;}
}ans;
BigNum operator*(BigNum a,int b)
{
int ws=a.ws;BigNum ret;ret.clear();
for(int i=1;i<=ws;++i)ret.s[i]=a.s[i]*b;
for(int i=1;i<=ws;++i)ret.s[i+1]+=ret.s[i]/yw,ret.s[i]%=yw;
while(ret.s[ws+1])++ws,ret.s[ws+1]+=ret.s[ws]/yw,ret.s[ws]%=yw;
ret.ws=ws;return ret;
}
int sum,a[MAX],cnt,n;
int p1[MAX],p2[MAX];
void add(int *p,int x)
{
for(int i=2;i*i<=x;++i)
while(x%i==0)x/=i,++p[i];
if(x>1)++p[x];
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
a[i]=read();if(a[i]==-1)continue;
++cnt;sum+=a[i]-1;
}
if(sum+n>2*(n-1)){puts("0");return 0;}
for(int i=n-2;i;--i)add(p1,i);
for(int i=n-2-sum;i;--i)add(p2,i);
for(int i=1;i<=n;++i)
if(a[i]!=-1)
for(int j=1;j<a[i];++j)
add(p2,j);
for(int i=1;i<=n-2-sum;++i)add(p1,n-cnt);
for(int i=1;i<=n;++i)p1[i]-=p2[i];
ans.s[1]=1;ans.ws=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=p1[i];++j)
ans=ans*i;
ans.output();
return 0;
}

【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)的更多相关文章

  1. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  2. 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度

    题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...

  3. [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...

  4. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  5. bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)

    1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...

  6. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  7. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  10. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

随机推荐

  1. STS-创建spring配置文件

    1.创建一个bean文件 2.输入文件名applicationContext.xml 3.这里会自动显示模板文件 4.创建后,自动填充头不定义 到这里就可以发现,我们创建spring文件时,需要的配置 ...

  2. spring boot项目配置RestTemplate超时时长

    配置类: @Configuration public class FeignConfiguration { @Bean(name="remoteRestTemplate") pub ...

  3. 使用参数化查询防止SQL注入漏洞(转)

    SQL注入的原理 以往在Web应用程序访问数据库时一般是采取拼接字符串的形式,比如登录的时候就是根据用户名和密码去查询: string sql * FROM [User] WHERE UserName ...

  4. 20155206赵飞 Exp1PC平台逆向破解及Bof基础实践

    实验一 逆向及Bof基础 1.掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码 NOP汇编指令的机器码是"90" JNE汇编指令的机器码是"75" ...

  5. 20155330 《网络对抗》 Exp8 Web基础

    20155330 <网络对抗> Exp8 Web基础 实验问题回答 什么是表单 表单可以收集用户的信息和反馈意见,是网站管理者与浏览者之间沟通的桥梁. 一个表单有三个基本组成部分 表单标签 ...

  6. MiZ702学习笔记11——如何使用vivado isim仿真

    说到vivado的仿真确实是很有意思,不管是ISE还是Quartus都可以自己自动生成测试平台的完整构架,但是vivado不行,所有的测试代码自己写!(我反正是查了好久,都没发现vivado如何自动生 ...

  7. 汇编 REPE/REPZ 指令,CMPSB指令

    知识点: REPE/REPZ 指令 CMPSB 指令 一.CMPSB //cmp //sub //SCASB//scasw//scasd cmp byte ptr [edi],al //对标志位的 ...

  8. mfc 友元类

    知识点 继承类成员的访问级别 友元类 继承访问控制: 基类 派生类(能否访问) public private protected 派生类类 派生类对象 派生类 派生类对象 派生类类 派生类对象 pri ...

  9. LOJ#6354. 「CodePlus 2018 4 月赛」最短路[最短路优化建图]

    题意 一个 \(n\) 个点的完全图,两点之间的边权为 \((i\ xor\ j)*C\) ,同时有 \(m\) 条额外单向路径,问从 \(S\) 到 \(T\) 的最短路. \(n\leq 10^5 ...

  10. mongodump备份小量分片集群数据

    1.使用mongodump备份小量分片集群数据 如果一个分片集群的数据集比较小,可以直接使用mongodump连接到mongos实例进行数据备份.默认情况下,mongodump到非primary的节点 ...