《算法》第四章部分程序 part 4
▶ 书中第四章部分程序,加上自己补充的代码,图的深度优先遍历
● 无向图的深度优先遍历,有向 / 无向图代码仅若干方法名不同,包括递归和非递归版本,去掉了顶点有效性的检查
package package01; import java.util.Iterator; // nonRecursiveDFS 需要
import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Graph;
import edu.princeton.cs.algs4.Stack; // recursiveDFS 不用 public class class01
{
private final int s; // 根顶点,depthFirstPath 需要
private boolean[] marked; // 顶点是否已被遍历
private int count; // 已遍历的顶点数(含后退),即从 s 可达的顶点数,depthFirstPath 不用
private int[] edgeTo; // 每个顶点在 s - v 路径中的父顶点,depthFirstPath 需要 public class01(Graph G, int inputS) // 初始化,开始DFS
{
s = inputS;
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
recursiveDFS(G, s);
} private void recursiveDFS(Graph G, int v)
{
count++;
marked[v] = true;
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v; // depthFirstPath 需要
recursiveDFS(G, w);
}
}
} public void nonRecursiveDFS(Graph G, int s) // 非递归版本
{
marked = new boolean[G.V()];
Iterator<Integer>[] adj = (Iterator<Integer>[]) new Iterator[G.V()];// 记录每个顶点处已经遍历到了哪一个链表节点
for (int v = 0; v < G.V(); v++)
adj[v] = G.adj(v).iterator();
Stack<Integer> stack = new Stack<Integer>();
marked[s] = true;
for (stack.push(s); !stack.isEmpty();)
{
int v = stack.peek();
if (adj[v].hasNext())
{
int w = adj[v].next();
if (!marked[w])
{
marked[w] = true;
stack.push(w);
}
}
else
stack.pop();
}
} public boolean marked(int v)
{
return marked[v];
} public int count()
{
return count;
} public Iterable<Integer> pathTo(int v)
{
if (!hasPathTo(v))
return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x]) // 从终点向起点压栈,以后吐栈的时候就是从起点到终点
path.push(x);
path.push(s);
return path;
} public static void main(String[] args)
{
In in = new In(args[0]); // 读入图文件和遍历起点
int s = Integer.parseInt(args[1]);
Graph G = new Graph(in);
class01 search = new class01(G, s);
for (int v = 0; v < G.V(); v++) // 通过检查是否所有的点都被遍历来确定图是否连通
{
if (search.marked(v))
{
StdOut.printf("%d to %d: ", s, v);
for (int x : search.pathTo(v))
{
if (x == s)
StdOut.print(x);
else
StdOut.print("-" + x);
}
StdOut.println();
}
else
StdOut.printf("%d to %d: not connected\n", s, v);
}
if (search.count() != G.V())
StdOut.println("\nNot connected.\n");
else
StdOut.println("\nConnected.\n");
}
}
● 有向图的深度优先遍历
package package01; import java.util.Iterator;
import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.Stack; public class class01
{
private final int s;
private boolean[] marked;
private int count;
private int[] edgeTo; public class01(Digraph G, int inputS)
{
s = inputS;
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
recursiveDirectedDFS(G, s);
} private void recursiveDirectedDFS(Digraph G, int v)
{
count++;
marked[v] = true;
for (int w : G.adj(v))
{
if (!marked[w])
{
edgeTo[w] = v;
recursiveDirectedDFS(G, w);
}
}
} public void nonRecursiveDirectedDFS(Digraph G, int s)
{
marked = new boolean[G.V()];
Iterator<Integer>[] adj = (Iterator<Integer>[]) new Iterator[G.V()];
for (int v = 0; v < G.V(); v++)
adj[v] = G.adj(v).iterator();
Stack<Integer> stack = new Stack<Integer>();
marked[s] = true;
for (stack.push(s); !stack.isEmpty();)
{
int v = stack.peek();
if (adj[v].hasNext())
{
int w = adj[v].next();
if (!marked[w])
{
marked[w] = true;
stack.push(w);
}
}
else
stack.pop();
}
} public boolean marked(int v)
{
return marked[v];
} public int count()
{
return count;
} public Iterable<Integer> pathTo(int v)
{
if (!hasPathTo(v))
return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])
path.push(x);
path.push(s);
return path;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
Graph G = new Graph(in);
class01 search = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (search.marked(v))
{
StdOut.printf("%d to %d: ", s, v);
for (int x : search.pathTo(v))
{
if (x == s)
StdOut.print(x);
else
StdOut.print("-" + x);
}
StdOut.println();
}
else
StdOut.printf("%d to %d: not connected\n", s, v);
}
if (search.count() != G.V())
StdOut.println("\nNot connected.\n");
else
StdOut.println("\nConnected.\n");
}
}
《算法》第四章部分程序 part 4的更多相关文章
- 《算法》第四章部分程序 part 19
▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...
- 《算法》第四章部分程序 part 18
▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...
- 《算法》第四章部分程序 part 16
▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...
- 《算法》第四章部分程序 part 15
▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...
- 《算法》第四章部分程序 part 14
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...
- 《算法》第四章部分程序 part 10
▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...
- 《算法》第四章部分程序 part 9
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...
- 《算法》第四章部分程序 part 17
▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题 ● 无环图最短 / 最长路径通用程序 pa ...
- 《算法》第四章部分程序 part 13
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...
- 《算法》第四章部分程序 part 12
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...
随机推荐
- 字节数组与String类型的转换
还是本着上篇文章的原则,只不过在Delphi中string有点特殊! 先了解一下Delphi中的string 1. string = AnsiString = 长字符串,理论上长度不受限制,但其实受限 ...
- Android adb 模拟滑动 按键 点击事件
模拟事件全部是通过input命令来实现的,首先看一下input命令的使用: usage: input ... input text <string> input keyeven ...
- js页面滚动时层智能浮动定位实现
直接上代码 $.fn.smartFloat = function (className) { var position = function (element) { var top = element ...
- Mongod服务器安装
第一步下载mongodb 目前最新版本:3.4.4 第二步安装vc_redist.x64 服务器安装可能会需要到,如果没有出现以下错误不需要安装 --------------------------- ...
- Global配置接口访问日志以及测试日志记录
在客户端请求接口时,经常会出现接口相应慢,接口等待超时,接口错误,为了这事相信不少后台开发者为此背锅,记下请求日志,拿出有力证据这才是关键. 1.接口请求错误记录 很多时候接口请求出现的500,404 ...
- java高并发编程(四)高并发的一些容器
摘抄自马士兵java并发视频课程: 一.需求背景: 有N张火车票,每张票都有一个编号,同时有10个窗口对外售票, 请写一个模拟程序. 分析下面的程序可能会产生哪些问题?重复销售?超量销售? /** * ...
- spring boot (入门简介 demo)
Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置.通过 ...
- mysql查询优化之四:优化特定类型的查询
本文将介绍如何优化特定类型的查询. 1.优化count()查询count()聚合函数,以及如何优化使用了该函数的查询,很可能是mysql中最容易被误解的前10个话题之一 count() 是一个特殊的函 ...
- Bisecting KMeans (二分K均值)算法讲解及实现
算法原理 由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选 ...
- centos7 搭建DHCP服务器
一.DHCP简单讲解 DHCP就是动态主机配置协议(Dynamic Host Configuration Protocol)是一种基于UDP协议且仅限用于局域网的网络协议,它的目的就是为了减轻TCP/ ...