# -*- coding: utf-8 -*-
"""
Created on Wed Jan 31 14:10:03 2018 @author: markli
"""
import numpy as np; def ReLU(x):
return max(0,x); class CovolutionLayer:
"""
卷积层包含卷积和汇合两步操作
"""
def __init__(self,filters,padding,pooling,action_fun=ReLU):
"""
filters 包含 filter_size filter_num filter_stride
filter_size 过滤器(卷积核)大小 [行,列]
filter_num 过滤器(卷积核)的个数
filter_stride 卷积步长
padding 填充的大小 填充0值
pooling 包含 pooling_size pooling_stride pooling_classic
pooling_size 池化时的大小 [行,列] 池化矩阵为方阵
pooling_stride 池化时的步长 一般情况下大小等于pooling_size
pooling_classic 汇合类型 类型包括 最大值汇合 max, 平均值汇合 average
action_fun 卷积操作的激活函数
"""
self.f_size = (filters[0],filters[1]);
self.f_num = filters[2];
self.f_stride = filters[3];
self.padding = padding;
self.p_size = (pooling[0],pooling[1]);
self.p_stride = pooling[2]
self.p_classic = pooling[3];
self.action_fun = action_fun; self.weights = [];
for i in range(self.f_num):
weight = np.random.randn(self.f_size[0],self.f_size[1]);
self.weights.append(weight); self.biase = np.random.randn(self.f_num); def Convolution(self,X):
"""
X 为二维数组
"""
#获得初始X的形状
n,m = X.shape;
#填充
if(self.padding != 0):
ones = np.zeros((n+2*self.padding,m+2*self.padding));
ones[self.padding:self.padding+n,self.padding:self.padding+m] = X;
X = ones; #获得填充后X的形状
n,m = X.shape; #求得卷积操作降维后的层的大小
t = int((n-self.f_size[0])/ self.f_stride) + 1; #行数
l = int((m-self.f_size[1]) / self.f_stride) + 1; #列数 #求得池化后降维的大小
t_p = int((t-self.p_size[0]) / self.p_stride) + 1; #池化层的行数
l_p = int((l-self.p_size[1]) / self.p_stride) + 1; #池化层的列数 self.convs = [];
self.pools = []
for k in range(self.f_num):
conv = np.ones((t,l));
pool = np.ones((t_p,l_p));
row = 0;
#卷积
for i in range(l):
col = 0;
for j in range(t):
temp = X[row:row+self.f_size[0],col:col+self.f_size[1]];
z = np.sum(np.multiply(self.weights[k],temp)) + self.biase[k];
a = self.action_fun(z);
conv[i][j] = a;
col = col + self.f_stride; row = row + self.f_stride; self.convs.append(conv); #池化
row = 0;
for i in range(t_p):
col = 0;
for j in range(l_p):
temp = conv[row:row+self.p_size[0],col:col+self.p_size[1]];
if(self.p_classic == "average"):
pool[i][j] = np.sum(temp) / (self.p_size[0] * self.p_size[1]);
else:
pool[i][j] = np.max(temp); col = col + self.p_stride; row = row + self.p_stride; self.pools.append(pool); X = np.array([[18,54,51,239,244,188],
[55,121,75,78,95,88],
[35,24,104,113,109,221],
[3,154,104,235,25,130],
[15,253,225,159,78,233],
[68,85,180,214,215,0]]); #X 归一化处理
X = (X - np.sum(X)/36) / np.max(X);
#print(X.shape) con = CovolutionLayer([3,3,2,1],1,[2,2,2,"max"],);
con.Convolution(X);
print(con.pools);

目前只能实现二维的操作,三维的实现还没想好如何存储。卷积神经网络的存储和计算是真的很复杂,过段时间想好了在实现。

Python3 CNN中卷积和池化的实现--限制为二维输入的更多相关文章

  1. CNN中卷积层 池化层反向传播

    参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...

  2. tensorflow中的卷积和池化层(一)

    在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁. ...

  3. 转载:cnn学习之卷积或者池化后输出的map的size计算

    相信各位在学习cnn的时候,常常对于卷积或者池化后所得map的的大小具体是多少,不知道怎么算.尤其涉及到边界的时候.   首先需要了解对于一个输入的input_height*input_widtht的 ...

  4. tensorflow的卷积和池化层(二):记实践之cifar10

    在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tenso ...

  5. CNN学习笔记:池化层

    CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...

  6. 【DeepLearning】基本概念:卷积、池化、Backpropagation

    终于有了2个月的空闲时间,给自己消化沉淀,希望别有太多的杂事打扰.在很多课程中,我都学过卷积.池化.dropout等基本内容,但目前在脑海中还都是零散的概念,缺乏整体性框架,本系列博客就希望进行一定的 ...

  7. UFLDL教程笔记及练习答案五(自编码线性解码器与处理大型图像**卷积与池化)

    自己主动编码线性解码器 自己主动编码线性解码器主要是考虑到稀疏自己主动编码器最后一层输出假设用sigmoid函数.因为稀疏自己主动编码器学习是的输出等于输入.simoid函数的值域在[0,1]之间,这 ...

  8. 卷积和池化的区别、图像的上采样(upsampling)与下采样(subsampled)

    1.卷积 当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去. ...

  9. DL基础补全计划(六)---卷积和池化

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...

随机推荐

  1. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  2. DynamicSegmentTree

    最近尝试了一下动态开点线段树,英文直译就是Dynamic Open Point Segment Tree,太SB了. 就跟之前的主席树写法差不多. if(!x || x == y) { x = ++t ...

  3. 各种蕴含算法思想的DP - 2

    study from: https://www.cnblogs.com/flashhu/p/9480669.html 3.斜率dp study from:http://www.cnblogs.com/ ...

  4. gulpfile.js不断更新中...

    Gulp压缩合并js/css文件,压缩图片,以及热更新教程 var gulp = require('gulp');var concat = require('gulp-concat');//- 多个文 ...

  5. 20145215《网络对抗》Exp2 后门原理与实践

    20145215<网络对抗>Exp2 后门原理与实践 基础问题回答 例举你能想到的一个后门进入到你系统中的可能方式? 在网上下载软件的时候,后门很有可能被捆绑在下载的软件当中: 浏览网页的 ...

  6. Excel:一维表和二维表 互转

    一.一维表转二维表 数据源: 一份流水账式的值班表,为了便于打印张贴,现在需要使其变成这样的样式: 也就是从一维表变成传说中的二维表. 1.新建查询 依次单击[数据]→[新建查询] →[从文件]→[从 ...

  7. java基础基础总结----- 随机数(产生四个随机数)

    前言:在开发的时候经常会遇见,一些验证码登录,其实这些东西,很简单.我曾经开发过一个验证码登录的页面,那时用的插件.但是作为一个合格的开发者,要了解其内部的核心知识,有些东西,可以不深入了解,但是要做 ...

  8. spring JMS在接收消息的时候总是报错

    spring JMS在接收消息的时候总是报错 org.springframework.jms.UncategorizedJmsException: Uncategorized exception oc ...

  9. java精确除法运算(BigDecimal)

    除法运算的函数定义如下 BigDecimal.divide(BigDecimal divisor, int scale, RoundingMode roundingMode) ; scale为小数位数 ...

  10. bzoj千题计划212:bzoj1864: [Zjoi2006]三色二叉树

    http://www.lydsy.com/JudgeOnline/problem.php?id=1864 #include<cstdio> #include<cstring> ...