【LOJ】#2527. 「HAOI2018」染色
题解
简单容斥题
至少选了\(k\)个颜色恰好出现\(S\)次方案数是
\(F[k] = \binom{M}{k} \frac{N!}{(S!)^{k}(N - i * S)!}(M - k)^{N - i * S}\)
然后恰好\(k\)个颜色恰好出现\(k\)次就是
\(g[k] = \sum_{j = k}^{M} (-1)^{k - j} \binom{j}{k}F[j]\)
然后就是
\(g[k]*k! = \sum_{j = k}^{M}\frac{(-1)^{j - k}}{(j - k)!} F[j]*j!\)
后面的只要把其中一个指数取反,就可以NTT卷积优化了
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define MAXN 100005
#define mo 974711
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1004535809;
const int MAXL = 1 << 20;
int W[MAXL + 5],a[MAXN],N,M,S,F[MAXN];
int fac[10000005],invfac[10000005];
int f[1000005],g[1000005];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int C(int n,int m) {
if(n < m) return 0;
return mul(fac[n],mul(invfac[m],invfac[n - m]));
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void NTT(int *p,int L,int on) {
for(int i = 1 , j = L >> 1 ; i < L - 1 ; ++i) {
if(i < j) swap(p[i],p[j]);
int k = L >> 1;
while(j >= k) {
j -= k;
k >>= 1;
}
j += k;
}
for(int h = 2 ; h <= L ; h <<= 1) {
int wn = W[(MAXL + on * MAXL / h) % MAXL];
for(int k = 0 ; k < L ; k += h) {
int w = 1;
for(int j = k ; j < k + h / 2 ; ++j) {
int u = p[j],t = mul(w,p[j + h / 2]);
p[j] = inc(u,t);
p[j + h / 2] = inc(u,MOD - t);
w = mul(w,wn);
}
}
}
if(on == -1) {
int InvL = fpow(L,MOD - 2);
for(int i = 0 ; i < L ; ++i) p[i] = mul(InvL,p[i]);
}
}
void Solve() {
read(N);read(M);read(S);
for(int i = 0 ; i <= M ; ++i) read(a[i]);
fac[0] = 1;
for(int i = 1 ; i <= 10000000 ; ++i) fac[i] = mul(fac[i - 1],i);
invfac[10000000] = fpow(fac[10000000],MOD - 2);
for(int i = 10000000 - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
W[0] = 1;
W[1] = fpow(3,(MOD - 1) / MAXL);
for(int i = 2 ; i < MAXL ; ++i) W[i] = mul(W[i - 1],W[1]);
int t = 1;
for(int i = 0 ; i <= M ; ++i) {
if(N / S < i) break;
F[i] = mul(C(M,i) , mul(fac[N] , mul(t , invfac[N - i * S])));
F[i] = mul(F[i],fpow(M - i,N - i * S));
t = mul(t,invfac[S]);
}
for(int i = 0 ; i <= M ; ++i) f[i] = mul(F[i],fac[i]);
t = 1;
for(int i = 0 ; i <= M ; ++i) {
g[M - i] = mul(t,invfac[i]);
t = mul(t,MOD - 1);
}
t = 1;
while(t <= 2 * M) t <<= 1;
NTT(f,t,1);NTT(g,t,1);
for(int i = 0 ; i < t ; ++i) g[i] = mul(g[i],f[i]);
NTT(g,t,-1);
int ans = 0;
for(int i = 0 ; i <= M ; ++i) {
g[i + M] = mul(g[i + M],invfac[i]);
ans = inc(ans,mul(g[i + M],a[i]));
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】#2527. 「HAOI2018」染色的更多相关文章
- 「HAOI2018」染色 解题报告
「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...
- Loj #3111. 「SDOI2019」染色
Loj #3111. 「SDOI2019」染色 题目描述 给定 \(2 \times n\) 的格点图.其中一些结点有着已知的颜色,其余的结点还没有被染色.一个合法的染色方案不允许相邻结点有相同的染色 ...
- LOJ #2527 Luogu P4491「HAOI2018」染色
好像网上没人....和我推出....同一个式子啊..... LOJ #2527 Luogu P4491 题意 $ n$个格子中每个格子可以涂$ m$种颜色中的一种 若有$ k$种颜色恰好涂了$ s$格 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
随机推荐
- 【bzoj2875】 Noi2012—随机数生成器
http://www.lydsy.com/JudgeOnline/problem.php?id=2875 (题目链接) 题意 求${X_{n}}$. Solution 矩乘板子,这里主要讲下会爆lon ...
- Openstack 错误日志查看方法
openstack错误日志查看方法 https://blog.csdn.net/ZanShichun/article/details/72672945
- linux读写锁
一.概述 读写锁与互斥量的功能类似,对临界区的共享资源进行保护!互斥量一次只让一个线程进入临界区, ...
- C语言复习---选择法排序
选择排序也是一种简单直观的排序算法 它的工作原理很容易理解:初始时在序列中找到最小(大)元素,放到序列的起始位置作为已排序序列:然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾. ...
- hdu 2433 Travel
http://acm.hdu.edu.cn/showproblem.php?pid=2433 题意: 求删除任意一条边后,任意两点对的最短路之和 以每个点为根节点求一个最短路树, 只需要记录哪些边在最 ...
- 优雅地搭建整合ssm项目
spring + spring mvc + mybatis 三大框架建议观看 黑马程序员出品的 Springmvc+Mybatis由浅入深全套视频教程 Spring框架2016版视频 观看顺序 ,我个 ...
- spark RDD 常见操作
fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...
- [C]语法, 知识点总结(二. 结构体, 类别名, static, const)
结构体 定义: struct Student{ // 定义结构体Student, stu是创建的对象 char a[17]; // 结构体里面可以有多种不同类型的变量 ...
- 微信公众号用户OpenID同步导出系统
一.简介 同步公众账号用户信息,包括OpenID.昵称.头像.地区等. 二.主要功能 同步公众账号用户 OpenID,以及昵称.头像.性别.地区.关注时间等,支持认证订阅号.认证服务号. 支持超过1万 ...
- Git Pull Failed: cannot lock ref 'refs/remotes/origin/xxxxxxxx': unable to resolve ref
1.xxxxxxxx代表目录名称,我要pull的目录是supman_creditmall_v5: 2.从代码库中pull代码时报这个错误,代码pull失败: 3.解决办法,看下图,删除文件后再pull ...