传送门

生成函数基础题。

题意:给出nnn个数以及它们的数量,求从所有数中选出i∣i∈[L,R]i|i\in[L,R]i∣i∈[L,R]个数来可能组成的集合的数量。


直接构造生成函数然后乘起来f(x)=∏i=1n(1+x+x2+...+xtimei)f(x)=\prod_{i=1}^n(1+x+x^2+...+x^{time_i})f(x)=∏i=1n​(1+x+x2+...+xtimei​)然后求出系数即可。

由于模数是1e61e61e6无法nttnttntt,考虑到数据很小可以直接用dpdpdp来转移(分组背包)

代码:

#include<iostream>
#include<cctype>
#include<cstdio>
#define ri register int
using namespace std;
const int mod=1e6;
#define add(a,b) ((a)+(b)>=mod?(a)+(b)-mod:(a)+(b))
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
int ans=0,T,a,L,R,cnt[1005],f[100005];
int main(){
	T=read(),a=read(),L=read(),R=read(),f[0]=1;
	for(ri i=1;i<=a;++i)++cnt[read()];
	for(ri i=1;i<=T;++i)for(ri k=R;~k;--k)for(ri j=min(cnt[i],k);j;--j)f[k]=add(f[k-j],f[k]);
	for(ri i=L;i<=R;++i)ans=add(ans,f[i]);
	cout<<ans;
	return 0;
}

2019.01.02 poj3046 Ant Counting(生成函数+dp)的更多相关文章

  1. poj-3046 Ant Counting【dp】【母函数】

    题目链接:戳这里 题意:有A只蚂蚁,来自T个家族,每个家族有ti只蚂蚁.任取n只蚂蚁(S <= n <= B),求能组成几种集合? 这道题可以用dp或母函数求. 多重集组合数也是由多重背包 ...

  2. 2019.01.02 poj1322 Chocolate(生成函数+二项式定理)

    传送门 生成函数好题. 题意简述:一个袋子里有ccc种不同颜色的球,现要操作nnn次,每次等概率地从袋中拿出一个球放在桌上,如果桌上有两个相同的球就立刻消去,问最后桌上剩下mmm个球的概率. 第一眼反 ...

  3. 2019.01.02 NOIP训练 三七二十一(生成函数)

    传送门 生成函数基础题. 题意简述:求由1,3,5,7,9这5个数字组成的n位数个数,要求其中3和7出现的次数都要是偶数. 考虑对于每个数字构造生成函数. 对于1,5,9:∑nxnn!=ex\sum_ ...

  4. [poj3046][Ant counting数蚂蚁]

    题目链接 http://noi.openjudge.cn/ch0206/9289/ 描述 Bessie was poking around the ant hill one day watching ...

  5. 2019.01.03 bzoj3456: 城市规划(生成函数+多项式取对)

    传送门 生成函数好题. 题意:求n个点的简单(无重边无自环)无向连通图数目 思路: 对简单无向图构造生成函数f(x)=∑n2Cn2xnn!f(x)=\sum_n2^{C_n^2}\frac{x^n}{ ...

  6. 2019.01.02 bzoj3513: [MUTC2013]idiots(fft)

    传送门 fftfftfft经典题. 题意简述:给定nnn个长度分别为aia_iai​的木棒,问随机选择3个木棒能够拼成三角形的概率. 思路:考虑对于木棒构造出生成函数然后可以fftfftfft出两个木 ...

  7. bzoj 1630: [Usaco2007 Demo]Ant Counting【dp】

    满脑子组合数学,根本没想到dp 设f[i][j]为前i只蚂蚁,选出j只的方案数,初始状态为f[0][0]=1 转移为 \[ f[i][j]=\sum_{k=0}^{a[i]}f[i-1][j-k] \ ...

  8. [poj3046]Ant Counting(母函数)

    题意: S<=x1+x2+...+xT<=B 0<=x1<=N1 0<=x2<=N2 ... 0<=xT<=NT 求这个不等式方程组的解的个数. 分析: ...

  9. 2019.01.24 bzoj3125: CITY(轮廓线dp)

    传送门 题意简述:给一个n∗mn*mn∗m的网格图,有的格子不能走,有的格子只能竖着走,有的格子只能横着走,问用一条回路覆盖所有能走的格子的方案数. 思路: 就是简单的轮廓线dpdpdp加了一点限制而 ...

随机推荐

  1. WLC5520无法通过无线客户端进行网管故障解决

    客户反馈其办公环境中的WLC5520网管需要通过内部有线网络进行管理,通过无线客户端无法进行管理,远程协助其开启WLC5520的无线管理功能后故障解决.

  2. java 異常抛出 throw 與 return

    package 異常;    public class TestException {      public TestException() {      }        boolean test ...

  3. TZOJ 5291 游戏之合成(快速幂快速乘)

    描述 zzx和city在玩一款小游戏的时候,游戏中有一个宝石合成的功能,需要m个宝石才可以合成下一级的宝石(例如需要m个1级宝石才能合成2级宝石). 这时候zzx问city说“我要合成A级宝石需要多少 ...

  4. java中钩子方法的概念

    钩子方法源于设计模式中模板方法(Template Method)模式,模板方法模式的概念为:在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以在不改变算法结构的情况下,重新 ...

  5. FOR ALL ENTRIES的使用

    使用FOR ALL ENTRIES时注意: 1.一定要确定要有是否为空的判断 2.一定要注明两个表之间数据的关系 eg: IF GT_TJ30T[] IS NOT INITIAL.      SELE ...

  6. POPUP_TO_CONFIRM的使用方法

    CALL FUNCTION 'POPUP_TO_CONFIRM'       EXPORTING         TEXT_QUESTION               = '是否要打印凭证!'    ...

  7. Python开发之数据类型

    Python数据类型 本节内容 数字 字符串 列表 元祖 字典 列表 集合 一 数字 数字在Python中分为整形,长整型,浮点数,负数等.在Python3中已经不再区分整形和长整形 1 整形 整形是 ...

  8. django os.environ慎用setdefault操作环境变量!

    在绝大多数情况下,如果需要在程序运行过程中设置环境变量,使用os.environ.setdefault函数是没有任何问题的,但是有两种场景下setdefault会造成意外的问题,需要慎用: 如果程序执 ...

  9. dev NavBarControl控件

    一.新建一个导航栏 拖入一个panel到窗口上做为导航栏的容器,然后再拖入一个NavBarControl到其上,点击NavBarControl控件的右上角三角箭头展开任务列表,选择PaintStyle ...

  10. PAT 1008 数组元素循环右移问题 (20)(代码)

    1008 数组元素循环右移问题 (20)(20 分) 一个数组A中存有N(N&gt0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M>=0)个位置,即将A中的数据由(A ...