LSTM介绍
转自:https://blog.csdn.net/gzj_1101/article/details/79376798
LSTM网络
long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise 的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。
LSTM核心思想
LSTM的关键在于细胞的状态整个(绿色的图表示的是一个cell),和穿过细胞的那条水平线。
细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

若只有上面的那条水平线是没办法实现添加或者删除信息的。而是通过一种叫做 门(gates) 的结构来实现的。
门 可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0 表示“不让任何信息通过”, 1 表示“让所有信息通过”。
LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。
逐步理解LSTM
现在我们就开始通过三个门逐步的了解LSTM的原理
遗忘门
在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取ht−1ht−1 和xtxt ,输出一个在 0到 1之间的数值给每个在细胞状态 Ct−1Ct−1 中的数字。1 表示“完全保留”,0 表示“完全舍弃”。
让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

其中ht−1ht−1 表示的是上一个cell的输出,xtxt 表示的是当前细胞的输入。σσ 表示sigmod函数。
输入门
下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个 步骤:首先,一个叫做“input gate layer ”的 sigmoid 层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容,C^tC^t 。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

现在是更新旧细胞状态的时间了,Ct−1Ct−1 更新为CtCt 。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。
我们把旧状态与ftft 相乘,丢弃掉我们确定需要丢弃的信息。接着加上it∗C~tit∗C~t 。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。
在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的性别信息并添加新的信息的地方。

输出门
最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。
在语言模型的例子中,因为他就看到了一个 代词,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

LSTM变体
原文这部分介绍了 LSTM 的几个变种,还有这些变形的作用。在这里我就不再写了。有兴趣的可以直接阅读原文。
下面主要讲一下其中比较著名的变种 GRU(Gated Recurrent Unit ),这是由 Cho, et al. (2014) 提出。在 GRU 中,如下图所示,只有两个门:重置门(reset gate)和更新门(update gate)。同时在这个结构中,把细胞状态和隐藏状态进行了合并。最后模型比标准的 LSTM 结构要简单,而且这个结构后来也非常流行。

其中, rtrt 表示重置门,ztzt 表示更新门。重置门决定是否将之前的状态忘记。(作用相当于合并了 LSTM 中的遗忘门和传入门)当rtrt 趋于0的时候,前一个时刻的状态信息ht−1ht−1 会被忘掉,隐藏状态h^th^t 会被重置为当前输入的信息。更新门决定是否要将隐藏状态更新为新的状态h^th^t (作用相当于 LSTM 中的输出门) 。
和 LSTM 比较一下:
- GRU 少一个门,同时少了细胞状态CtCt
。
- 在 LSTM 中,通过遗忘门和传入门控制信息的保留和传入;GRU 则通过重置门来控制是否要保留原来隐藏状态的信息,但是不再限制当前信息的传入。
- 在 LSTM 中,虽然得到了新的细胞状态 Ct,但是还不能直接输出,而是需要经过一个过滤的处理:ht=ot∗tanh(Ct)ht=ot∗tanh(Ct)
;同样,在 GRU 中, 虽然我们也得到了新的隐藏状态h^th^t
, 但是还不能直接输出,而是通过更新门来控制最后的输出:ht=(1−zt)∗ht−1+zt∗h^tht=(1−zt)∗ht−1+zt∗h^t
多层LSTM
多层LSTM是将LSTM进行叠加,其优点是能够在高层更抽象的表达特征,并且减少神经元的个数,增加识别准确率并且降低训练时间
LSTM介绍的更多相关文章
- 网络流量预测入门(二)之LSTM介绍
目录 网络流量预测入门(二)之LSTM介绍 LSTM简介 Simple RNN的弊端 LSTM的结构 细胞状态(Cell State) 门(Gate) 遗忘门(Forget Gate) 输入门(Inp ...
- RNN LSTM 介绍
[RNN以及LSTM的介绍和公式梳理]http://blog.csdn.net/Dark_Scope/article/details/47056361 [知乎 对比 rnn lstm 简单代码] ...
- pytorch, LSTM介绍
本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的. CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是pos ...
- RNN、LSTM介绍以及梯度消失问题讲解
写在最前面,感谢这两篇文章,基本上的框架是从这两篇文章中得到的: https://zhuanlan.zhihu.com/p/28687529 https://zhuanlan.zhihu.com/p/ ...
- 语音识别(LSTM+CTC)
完整版请微信关注“大数据技术宅” 序言:语音识别作为人工智能领域重要研究方向,近几年发展迅猛,其中RNN的贡献尤为突出.RNN设计的目的就是让神经网络可以处理序列化的数据.本文笔者将陪同小伙伴们一块儿 ...
- 『cs231n』RNN之理解LSTM网络
概述 LSTM是RNN的增强版,1.RNN能完成的工作LSTM也都能胜任且有更好的效果:2.LSTM解决了RNN梯度消失或爆炸的问题,进而可以具有比RNN更为长时的记忆能力.LSTM网络比较复杂,而恰 ...
- LSTM机器学习生成音乐
目录 LSTM机器学习生成音乐 数据集介绍 将mid转成note数组 将note数组转成mid文件 获取数据集并将其保存 将note进行编号 构建数据集 截取数据 进行one-hot编码 构建模型 训 ...
- 网络流量预测入门(三)之LSTM预测网络流量
目录 网络流量预测入门(三)之LSTM预测网络流量 数据集介绍 预测流程 数据集准备 SVR预测 LSTM 预测 优化点 网络流量预测入门(三)之LSTM预测网络流量 在上篇博客LSTM机器学习生成音 ...
- 深度学习|基于LSTM网络的黄金期货价格预测--转载
深度学习|基于LSTM网络的黄金期货价格预测 前些天看到一位大佬的深度学习的推文,内容很适用于实战,争得原作者转载同意后,转发给大家.之后会介绍LSTM的理论知识. 我把code先放在我github上 ...
随机推荐
- ssh无法登录,提示Connection closing...Socket close.
一.问题无法ssh直接连接到服务器 [C:\~]$ ssh 192.168.7.77 Connecting to ... Connection established. To escape to lo ...
- [UOJ#268]. 【清华集训2016】数据交互[动态dp+可删堆维护最长链]
题意 给出 \(n\) 个点的树,每个时刻可能出现一条路径 \(A_i\) 或者之前出现的某条路径 \(A_i\) 消失,每条路径有一个权值,求出在每个时刻过后能够找到的权值最大的路径(指所有和该路径 ...
- Java设计模式-建造者(Builder)模式
目录 由来 使用 1. 定义抽象 Builder 2. 定义具体 Builder类 3. 定义具体 Director类 4. 测试 定义 文字定义 结构图 优点 举例 @ 最近在看Mybatis的源码 ...
- JQuery快速入门-选择器
JQuery选择器 JQuery 选择器继承了CSS 与Path 语言的部分语法,允许通过标签名.属性名或内容对DOM 元素进行快速.准确的选择,而不必担心浏览器的兼容性,通过jQuery 选择器对页 ...
- 2. Python3 基础入门
Python3 基础入门 编码 在python3中,默认情况下以UTF-8编码.所有字符串都是 unicode 字符串,当然也可以指定不同编码.体验过2.x版本的编码问题,才知道什么叫难受. # -* ...
- nodejs mongodb 查询要看的文章
http://www.cnblogs.com/refactor/archive/2012/07/30/2591344.html 数组很大多数情况下可以这样理解:每一个元素都是整个键的值. db.use ...
- git初次推送
第一次配置Git git config --global user.name "xxxx" git config --global user.email "xxxx@xx ...
- PAT甲题题解-1021. Deepest Root (25)-dfs+并查集
dfs求最大层数并查集求连通个数 #include <iostream> #include <cstdio> #include <algorithm> #inclu ...
- PAT甲题题解-1125. Chain the Ropes (25)-贪心水题
贪心水题,每次取最短的两个绳子合并,长度缩减成一半 #include <iostream> #include <cstdio> #include <algorithm&g ...
- 【Leetcode】222. Count Complete Tree Nodes
Question: Given a complete binary tree, count the number of nodes. Definition of a complete binary t ...