一道树的直径

BZOJ原题链接

洛谷原题链接

显然在原图上路线的总长为\(2(n-1)\)。

添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍。所以为了使添加的边的贡献最大化,我们找出树的直径,将其两端点连上边即可。

设直径长\(L\),于是路线总长就变为\(2(n-1)-L+1=2n-L-1\)。

当\(K=1\)时,这就是答案。

当\(K=2\)时,我们考虑在上述添边后图中再添一条边。

添加这条边同样会形成一个环,如果这个环与之前的环没有边重合的话,那么贡献和上一边一样,但如果有重边,就会导致重边又需要走两边。

这就相当于添加的这条边在重边上的贡献为\(-1\),所以我们可以将第一次添边时搜到的直径上的所有边的权值改为\(-1\),然后依旧找出修改后的图的直径即可。

设第一条直径长\(L_1\),第二条长\(L_2\),那么最终路线总长就变为\(2(n-1)-L_1+1-L_2+1=2n-L_1-L_2\)。

另外,注意因为第二次找直径时,有边的权值为负,这时普通的\(dfs\)找直径是无法找到正确的直径的。

#include<cstdio>
using namespace std;
const int N = 1e5 + 10;
int di[N << 1], da[N << 1], ne[N << 1], fi[N], dis[N], D[N], dia, l;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c<'0' || c>'9'; c = getchar())
p |= c == '-';
for (; c >= '0'&&c <= '9'; c = getchar())
x = x * 10 + (c - '0');
return p ? -x : x;
}
inline void add(int x, int y)
{
di[++l] = y;
da[l] = 1;
ne[l] = fi[x];
fi[x] = l;
}
inline int maxn(int x, int y)
{
return x > y ? x : y;
}
void dfs(int x, int fa, int d)
{
int i, y;
if (dia < d)
{
dia = d;
D[0] = x;
}
D[x] = fa;
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
if (y != fa)
dfs(y, x, d + 1);
}
}
void fixda(int x, int y)
{
int i;
for (i = fi[x]; i; i = ne[i])
if (di[i] == y)
{
da[i] = -1;
return;
}
}
void dp(int x, int fa)
{
int i, y;
for (i = fi[x]; i; i = ne[i])
{
y = di[i];
if (y != fa)
{
dp(y, x);
dis[0] = maxn(dis[0], dis[x] + dis[y] + da[i]);
dis[x] = maxn(dis[x], dis[y] + da[i]);
}
}
}
int main()
{
int i, n, m, x, y;
n = re();
m = re();
for (i = 1; i < n; i++)
{
x = re();
y = re();
add(x, y);
add(y, x);
}
dfs(1, 0, 0);
dia = 0;
dfs(D[0], 0, 0);
if (m == 1)
{
printf("%d", (n << 1) - dia - 1);
return 0;
}
for (x = D[0]; x; x = y)
{
y = D[x];
fixda(x, y);
fixda(y, x);
}
dp(1, 0);
printf("%d", (n << 1) - dia - dis[0]);
return 0;
}

BZOJ1912或洛谷3629 [APIO2010]巡逻的更多相关文章

  1. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  2. 洛谷 P3629 [APIO2010]巡逻 解题报告

    P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...

  3. 洛谷 P3629 [APIO2010]巡逻

    题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...

  4. 洛谷P3629 [APIO2010]巡逻(树的直径)

    如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...

  5. [洛谷P3628] [APIO2010]特别行动队

    洛谷题目链接:[APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动 ...

  6. 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)

    洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...

  7. Luogu 3629 [APIO2010]巡逻

    先考虑$k = 1$的情况,很明显每一条边都要被走两遍,而连成一个环之后,环上的每一条边都只要走一遍即可,所以我们使这个环的长度尽可能大,那么一棵树中最长的路径就是树的直径. 设直径的长度为$L$,答 ...

  8. 洛谷P3628 [APIO2010]特别行动队(斜率优化)

    传送门 先写出转移方程$$dp[i]=max\{dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c\}$$ 假设$j$比$k$更优,则有$$dp[j]+a*(s ...

  9. 洛谷P3628 [APIO2010]特别行动队 斜率优化

    裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using nam ...

随机推荐

  1. 判断素数(翁凯男神MOOC)

    从2到x-1测试是否可以整除 int isPrime(int x); int main(int argc, char **argv) { int x; scanf("%d",&am ...

  2. 解决C3P0在Linux下Failed to get local InetAddress for VMID问题

    解决C3P0在Linux下Failed to get local InetAddress for VMID问题 FailedtogetlocalInetAddressforVMID.Thisisunl ...

  3. linux 安装nexus3

    准备工作: 环境:linux 系统:centos6.4-x86-x64 安装工具:nexus-3.14 软件下载:nexus-3.14 官网下载地址:点击打开链接 将下载的压缩包通过xft5上传至/o ...

  4. 前端三大框架之一React入门教程

    相信大家对框架这个词都很熟悉吧,我一直喜欢js原生来开发,但是目前都要求工作效率,所有使用框架或者是库会使我们开发更加方便和快速,甚至一个人干十个人的活.. 框架优点: 1.方便开发.快速写功能 2. ...

  5. 解题6(OutputNMin)

    题目描述 输入n个整数,输出其中最小的k个. 详细描述: 接口说明 原型: bool GetMinK(unsignedint uiInputNum, int * pInputArray, unsign ...

  6. 并发编程(IO多路复用)

    阅读目录 一 IO模型介绍 二 阻塞IO(blocking IO) 三 非阻塞IO(non-blocking IO) 四 多路复用IO(IO multiplexing) 五 异步IO(Asynchro ...

  7. centos 6.9 NTP基准时间服务器配置

    时间服务器端 yum install ntp -y vim /etc/ntp.conf 增加允许客户端访问 restrict 192.168.0.0 mask 255.255.0.0 nomodify ...

  8. Python 学习笔记---爬取海贼王动漫

    最近无聊整理的爬虫代码,可以自动爬取腾讯动漫的任意漫画,思路如下: 1. 先获取想下载的动漫url, 这里用了 getUrls ,直接获取动漫的最后一章 2. 然后进入到该动漫去获取要下载的图片url ...

  9. 牛客练习赛15A-吉姆的运算式(Python正则表达式瞎搞)

    传送门 题意:出现的数字,取最后一个数字即可. Python正则表达式提取数字 代码: import re str = input() a = re.findall(r'\-*\d+(?:\.\d+) ...

  10. linux同步机制2

    一.并发控制(1)自旋锁得不到资源,会原地打转,直到获得资源为止定义自旋锁 spinlock_t spin;初始化自旋锁 spin_lock_init(lock);获得自旋锁spin_lock(loc ...