HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式
http://acm.hdu.edu.cn/showproblem.php?pid=1402
快速傅里叶变换优化的高精度乘法。
https://blog.csdn.net/ggn_2015/article/details/68922404 这个写的很详细了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<vector>
#include<complex>
using namespace std;
#define LL long long
const int maxn=;
typedef complex< double >cd;
char s1[maxn]={},s2[maxn]={};
int ans[maxn]={};
int rev[maxn]={}; int s,bit;
cd a[maxn]={},b[maxn]={};
double Pi;
inline void getrev(){ for(int i=;i<s;i++)rev[i]=(rev[i>>]>>)|((i&)<<(bit-)); }
inline void fft(cd *c,int n,int dft){
for(int i=;i<=s;i++)if(rev[i]>i)swap(c[i],c[rev[i]]);
for(int step=;step<n;step<<=){
cd shu=exp(cd(,dft*Pi/step));
for(int i=;i<n;i+=step<<){
cd z=cd(,);
for(int j=i;j<i+step;j++){
cd x=c[j];cd y=c[j+step]*z;
c[j]=x+y; c[j+step]=x-y;
z*=shu;
}
}
}
if(dft==-)for(int i=;i<n;i++)c[i]/=n;
}
int main(){
cd cle(,);Pi=2.0*acos(0.0);
while(~scanf("%s%s",s1,s2)){
memset(rev,,sizeof(rev));
int l1=strlen(s1),l2=strlen(s2),n=l1+l2-;
bit=;s=; for(;s<n;++bit)s<<=;
getrev();
for(int i=;i<=s;i++){a[i]=cle;b[i]=cle;}
for(int i=;i<l1;i++)a[i]=(double)(s1[l1-i-]-'');
for(int i=;i<l2;i++)b[i]=(double)(s2[l2-i-]-'');
fft(a,s,);fft(b,s,);
for(int i=;i<s;i++)a[i]*=b[i];
fft(a,s,-);
memset(ans,,sizeof(ans));
for(int i=;i<s;i++){
ans[i]+=(int)(a[i].real()+0.5);
ans[i+]+=ans[i]/;
ans[i]%=;
}
int i;
for(i=l1+l2;!ans[i]&&i>;--i);
if(i==)printf("%d\n",ans[]);
else{
for(;i>=;--i)printf("%d",ans[i]);
printf("\n");
}
}
return ;
}
HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式的更多相关文章
- HDU - 1402 A * B Problem Plus FFT裸题
http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 求$a*b$ 但是$a$和$b$的范围可以达到 $1e50000$ 题解: 显然...用字符串模拟 ...
- hdu 1402 A * B Problem Plus FFT
/* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...
- 快速傅里叶变换FFT
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 快速傅里叶变换FFT& 数论变换NTT
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 快速傅里叶变换(FFT)
扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...
- 快速傅里叶变换(FFT)_转载
FFTFFT·Fast Fourier TransformationFast Fourier Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
随机推荐
- 【前端安全】JavaScript防XSS攻击
什么是XSS XSS(Cross Site Scripting),跨站脚本攻击,是一种允许攻击者在另外一个用户的浏览器中执行恶意代码脚本的脚本注入式攻击.本来缩小应该是CSS,但为了和层叠样式(Cas ...
- 如何设置Ultraedit自动换行
有时候这会非常麻烦, 要让Ultraedit自动换行请按发下方法: 1. 点击菜单栏的"高级→配置",找到"编辑器→自动换行/制表符设置". 2. 然后,把&q ...
- Here’s just a fraction of what you can do with linear algebra
Here’s just a fraction of what you can do with linear algebra The next time someone wonders what the ...
- 一些CSS3的乐趣 - 工作也能发现乐的源头
中秋节 translate 前些日子做一个中秋节的专题,主要就是写一个效果,月亮滚动,花瓣飘落.具体代码如下: .icons {z-index:10088; position:absolute; -w ...
- 通过vnc访问无显卡服务器的图形环境
最近在一台没有显卡的 Power 服务器上,安装了Fedora 22,因为没有显卡,所以不能在本机启动Xserver,于是想通过vnc的方式远程访问服务器的图形环境. 在服务器上安装好xserver和 ...
- java concurrent 中ExecutorService和CompletionService简单区别
举个例子,现在需要执行10个任务,这些任务都是有返回值,并且需要使用10个线程同时执行.一般的做法就是创建ExecutorService线程池,pool大小10,每个任务实现Callable接口,然后 ...
- 【转载】maven pom详解(2)
setting.xml主要用于配置maven的运行环境等一系列通用的属性,是全局级别的配置文件:而pom.xml主要描述了项目的maven坐标,依赖关系,开发者需要遵循的规则,缺陷管理系统,组织和li ...
- 学习mysql replication
- MYSQL问题解决
1. MySQL错误日志里出现: 140331 10:08:18 [ERROR] Error reading master configuration 140331 10:08:18 [ERROR] ...
- 004_加速国内docker源下载速度
docker下载慢的不行.国内加速器地址 http://355dbe53.m.daocloud.iohttps://docker.mirrors.ustc.edu.cn https://hub-mir ...